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1. Xu and Zhao can each solve m puzzles in an hour, and Wei can solve n puzzles in an hour,
where m and n are positive integers. Xu starts working on a set of m · n puzzles for 3 hours.
Then, Xu, Zhao, and Wei all work for the next 5 hours. Finally, Wei works on the set alone
for 1 more hour and finishes the set. Find the greatest possible value of m+ n.

Proposed by Emathmaster

(Answer: 098)

The total number of hours put in by Xu and Zhao combined is 3 + 5 · 2 = 13, and Wei puts in
6. Thus, mn = 13m + 6n. Rearranging, we get mn − 13m − 6n = 0, and adding 78 to both
sides and factoring the left hand side, we get (m − 6)(n − 13) = 78. In order to maximize
m+ n, we have to make (m− 6) and (n− 13) as far as possible, which happens when either
m− 6 = 78 and n− 13 = 1, or when m− 6 = 1 and n− 13 = 78. In both cases, we get that
m+ n = 78 + 1 + 6 + 13 = 098 .

2. Jela and Benn are playing a game. Each round, Jela and Benn each flip a fair coin at the
same time. Jela and Benn win if they flip heads together. However, they lose if they flip tails
together for three rounds in a row. If neither event happens after the end of 4 rounds, they
also lose. The probability that Jela and Benn win can be written as m

n
, where m and n are

relatively prime positive integers. Find m+ n.

Proposed by ivyzheng and DeToasty3

(Answer: 215)

Consider the complement; where either three tails-tails pairs occur in a row, or 4 rounds
happen with no event happening. In this complementary case, we can have any of the three
possibilities H-T, T-H, or T-T, where none of the turns are H-H. (where H represents heads,
T represents tails, the first letter in the pair represents Jela’s flip, and the second letter in the
pair represents Benn’s flip) There are 4 rounds, and there are three possibilities for each turn,
for a total of 34 = 81 ways. However, there is also the one case T-T T-T T-T H-H, which
contributes 1 more case to our count, for a total of 82 ways.

Now, the probability is 1− 82
256

= 256−82
256

= 174
256

= 87
128

, so m+ n = 87 + 128 = 215 .
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3. Two dogs, Otie and Amy, are each given an integer number of biscuits to eat, where Otie and
Amy get x and y biscuits, respectively, and 0 < x < y < 72. At the start, the numbers x, y,
and 72 form an arithmetic progression, in that order. Each dog then eats N of their biscuits,
where N is a positive integer less than x. After they finish eating, Amy now has exactly three
times the number of biscuits left over as Otie. Find the number of possible values of N .

Proposed by DeToasty3

(Answer: 014)

Let d be the common difference of the arithmetic progression. Then Otie has 72− 2d pieces,
and Amy has 72−d pieces. After eating, Otie has 72−2d−N pieces, and Amy has 72−d−N
pieces. We set up a system:

216− 6d− 3N = 72− d−N

N < 72− 2d

2d < 72.

Simplifying, we get 5d+ 2N = 144, 4d+ 2N < 144, and d < 36. Subtracting 5d+ 2N = 144
and 4d+2N < 144, we get that d > 0, which is always true. Therefore, any integer solution to
the equation 5d+2N = 144, where d is a positive integer, will necessarily satisfy the inequality
4d+2N < 144. We don’t want N = 0 because N is defined as a positive integer, so all integer
solutions to the equation 5d+2N = 144, where d and N are both positive integers, satisfy our
conditions. The integer solution with the smallest positive value of N is (28, 2). The integer
solution with the largest integer value of N is (2, 67). (N 6= 72 because if N = 72, then d = 0,
which we don’t want.) We can repeatedly change N by −5 and change d by 2 to get other
solutions. We see that in all of these solutions, d < 36. Thus, our answer is 67−2

5
+ 1 = 014 .

4. April and Ollie have 10 empty baskets. In each basket, April puts a whole number of flowers
between 1 and 11 inclusive, chosen uniformly and randomly. Then, Ollie puts a whole number
of flowers in each basket between 1 and 12 inclusive, chosen uniformly and randomly. Finally,
April and Ollie compute the product of the number of flowers in each basket over all 10 baskets.
Given that the expected value of the product is m

n
for relatively prime positive integers m and

n, find the remainder when m+ n is divided by 1000.

Proposed by Emathmaster

(Answer: 649)

The expected value on the first distribution of flowers in any given basket is 6. The expected
value of flowers between 1 to 12 is 13

2
, so we expect 25

2
flowers in each of the ten baskets

at the end. By Linearity of Expectation, we have that the expected value of the product is(
25
2

)10
. Then, m+ n = 2510 + 210. Note that 2510 ≡ 625 (mod 1000) and 210 = 1024. So the

remainder when m+ n is divided by 1000 is 625 + 24 = 649 .

5. Let rectangle ABCD have AB = 24 and BC = 10. A point P on AB is chosen uniformly at
random. The probability there exists a point Q on AD such that P is on the perpendicular
bisector of segment CQ is m

n
for relatively prime positive integers m and n. Find m+ n.

Proposed by Emathmaster
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(Answer: 313)

Let O be the center of the rectangle. Let M be the midpoint of side AB and N be the point
such that NO is perpendicular to AC. Then, P is bounded by M and N , which gives the
answer of 25

288
. Then, m+ n = 313 .

6. A positive integer is called maybe prime if all of its digits are primes and the number is not
divisible by 2 or 3. Find the number of positive integers less than 10, 000 that are maybe prime.

Proposed by PCChess

(Answer: 170)

Solution 1: Note that we can only use the digits 2, 3, 5 and 7. Consider an n digit number.
For the first n− 1 digits (all the digits except the units digit), there are 4n−1 ways to choose
the digits so that the number is maybe prime. Since a number is divisible by 3 if and only if
its digits sum to a multiple of 3, and the fact that 3, 5 and 7 are all different mod 3, two of
3, 5 and 7 will be able to be the units digit of the n digit maybe prime number. Hence, for any
n, there are 2 · 4n−1 maybe prime numbers. The answer is therefore 2 + 8 + 32 + 128 = 170 .

Solution 2: First, notice that we can only use the digits 2, 3, 5, and 7. Each of those digits
are 2, 0, 2, and 1 mod 3, respectively. We can do casework on the number of digits.

1-digit numbers: There are 2 numbers: 5 and 7.

2-digit numbers: There are so little that we can list them out: 23, 25, 35, 37, 53, 55, 73, 77. We
have 8 numbers.

3-digit numbers: Note that there are 43 = 64 total possibilities. We can now do complementary
counting and PIE. There are 42 numbers divisible by 2.

For a number to be divisible by 3, the sum of the digits have to be 0 mod 3. The possible
residue combinations are 000, 111, 120, and 222. For 000, there is only one way, namely the
number 333. For 111, there is only one way as well, namely 777. For 120, there are the
possibilities of 237 and 357, with 6 permutations each, so there are 12 possible numbers. For
222, there are 8 possible numbers: 2 choices for each digit.

Also, there are 6 numbers that are divisible by 2 and 3: 552, 522, 252, 222, 372, and 732.
Therefore, there are 64− (16 + 22− 6) = 32 3 digit numbers that are maybe prime.

4-digit numbers: There are 44 = 256 possibilities, with 43 = 64 of them divisible by 2. The
possible residue combinations to be divisible by 3 are 0000, 1110, 1200, 2220 and 2211. For
0000, there is one way: 3333. For 1110, there are 4 ways: the permutations of 7773. For
1200, there are 12+12=24 ways: the permutations of 7533 and 7233. For 2220, there are
4+12+12+4=32 ways: A 3 and the possible combinations of 5 and 2. For 2211, there are
6+12+6=24 ways: 2 sevens and the possible combinations of 5 and 2.

There are 3+(3+6+3)+(3+3) = 21 multiples of 2 and 3, so there are 256−(64+85−21) = 128
maybe prime numbers.

In total, the answer is 2 + 8 + 32 + 128 = 170 .

7. In acute 4ABC, altitudes AD, BE, and CF intersect at point H. Line AH intersects the
circumcircle of 4BCH at another point A′, where A′ 6= H. Given that A′D − AH = 3,
BD = 4, and CD = 6, find the area of quadrilateral AEHF .

Proposed by Awesome guy
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(Answer: 011)

First, we note that ∠DAC = ∠EBC = ∠HBC = ∠HA′C. It then follows that 4AA′C
is isosceles with AC = A′C and AD = A′D. Using A′D − AH = 3, HD = 3. Then by
Power of a Point, A′D = AD = 8. Then, we chase similar triangles to find HE = 3 and
AE = 4, so [AHE] = 6. Finally, FH =

√
5 and AF = 2

√
5, so [AFH] = 5. [AEFH] =

[AFH] + [AHE] = 011 .

8. A 7× 7 square chessboard has gridlines parallel to the edges of the board which split it into
49 congruent 1× 1 squares. Jacob wants to cover this chessboard with four indistinguishable
3 × 3 square tiles such that none of the tiles overlap or go off the edge of the board, and all
of the sides of each tile are perfectly aligned with the gridlines of the board. How many ways
are there to tile the grid such that at least one tile touches a corner of the board? Two tilings
are considered distinct if they are not identical without rotating or reflecting the chessboard.

Proposed by PCChess

(Answer: 077)

We will do casework based on how many squares are situated in corners and where they are.

Case 1: All 4 are in a corner.

There is just 1 case.

Case 2: 3 are in a corner.

Without loss of generality, suppose that the 3× 3 squares occupy the top left, top right, and
bottom left corners. We will multiply by 4 for rotations after. We can ignore the 1× 3 spaces
in between the 3 × 3 squares because there is no way we can fit any part of a 3 × 3 square
in there. We are left with a 4 × 4 grid in the bottom right corner of the board. There are 4
different spots the fourth 3× 3 square can occupy, but one of those spots include touching a
corner, so we can only place the fourth square in 3 ways. We have 3 · 4 = 12 cases here.

Case 3: 2 squares occupy two adjacent corners.

We will multiply by 4 for rotations later. Again, there is no way we can fit any part of a
3 × 3 square in the gap between 3 × 3 squares, so we are left with a grid that is 4 columns
in width and 7 rows in length. Let the notation (a, b) refer to the grid cell in column a and
row b, where the columns are numbered in increasing order from left to right and the rows
are numbered in increasing order from down to up (like a coordinate system). We have that
(4, 1) and (4, 7) are blocked off to prevent any more 3 × 3 squares from being in corners. If
we try to use up some of the space in column 4, we have two arrangements for the center of
the 3 × 3 squares: we can do (2, 2) and (3, 5) or we can do (2, 5) and (3, 2). However, if we
don’t want to use any of the space in column 4, we must place the squares in columns 1, 2,
and 3. There are 3 ways to do so because it is the same as ordering 2 indistinguishable 3× 3
squares and a 1× 3 piece. So we have 4 · 5 = 20 cases here.

Case 4: 2 squares occupy opposite corners.

We will multiply by 2 for rotations at the end. We can think of the remaining portion of the
board as two 4 × 4 grids that share a single cell in the center. Since the corners are blocked
off, in a 4 × 4 grid, we have 3 ways to choose where the 3 × 3 square goes. We also have 3
ways to choose where the square goes in the other 3× 3 square goes. However, one of the 3 · 3
ways involves both 3 × 3 squares overlapping at the center cell, so there are 8 ways to place
the 3× 3 squares safely. So we have 2 · 8 = 16 cases here.
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Case 5: 1 square occupies a corner.

We will multiply by 4 for rotations at the end. Suppose the top left corner is the one that
is occupied. Next, suppose we were to block off the remainder of the leftmost column. If we
tried to block off the remainder of the second column as well, there would be no way to place
the remaining three 3 × 3 squares. Therefore, we must place one of the 3 × 3 squares with
center (3, 2) or (3, 3). In either case, the remaining two squares must have centers (6, 3) and
(5, 6). If we didn’t block off the leftmost column, we must have the first 3 × 3 square with
center (2, 3). Then, we have a 4 × 7 grid to work with and 2 of the corners are blocked off.
Reusing our work from case 3, we have 5 ways to place the squares here. Therefore, we have
4 · 7 = 28 cases here.

Adding everything up, we have 1 + 12 + 20 + 16 + 28 = 077 total cases.

9. On each vertex of regular hexagon ABCDEF , where the vertices are distinct, a positive
integer divisor of 2020 is written. Then, on each edge, the greatest common divisor of the two
integers on the vertices containing the edge is written. Suppose the least common multiple
of the six integers written on the edges is 2020. If N is the number of ways where this is
possible, find the sum of the (not necessarily distinct) primes in the prime factorization of N .

Proposed by P Groudon

(Answer: 363)

We note that 2020 = 22 · 5 · 101. The divisors of 2020 will not be divisible by a prime that
does not divide 2020. In addition, the greatest common factor and least common multiple
functions merely change the exponents of the primes. Therefore, we will distribute each
prime separately along the circle. Because 5 and 101 have the same exponent in the prime
factorization of 2020, there will be the same number of ways to distribute them.

Let vp(2020) denote the number of times p shows up in the prime factorization of 2020. When
we consider each prime separately, instead of writing divisors on each of the vertices of the
hexagon, we write a number from 0 to vp(2020), inclusive.

When we take the greatest common factor of the numbers on two consecutive vertices, we
write the smaller of the two exponents on the edge. When we take the least common multiple
of the 6 numbers on the edges, we take the largest possible number among all the edges. In
this case, 2020 must be the least common multiple. Therefore, for each prime p, we must have
vp(2020) written on at least one of the edges. To achieve this, we must have two consecutive
vertices with vp(2020) written on both.

Therefore, distributing a prime p is the same as: ”Find the number of ways to write an integer
from 0 to vp(2020), inclusive on each vertex of a regular hexagon such that there at least two
consecutive vertices that both have vp(2020) written on it.”

Let’s consider the number of ways with vp(2020) = 1. Let C(k) be the number of arrangements
that work if we have exactly k 1s in the circle.

By casework:

C(2) = 6, C(3) = 18, C(4) = 15, C(5) = 6, C(6) = 1. These add up to 46, so we have 46
ways to distribute the 5s and 101s.

Now we consider distributing the 2s by reusing some of our work from vp(2020) = 1.

The number of ways to distribute the 2s is given by:
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6∑
k=2

(C(k) · 26−k) = 313.

This is because for any valid arrangement with vp(2020) = 1, we can change all the 1s to 2s.
Then, for all the 6− k spaces with 0s, we can change them to either a 0 or a 1.

Therefore, N = 313 · 462. We notice that 313 is prime, but 46 = 23 · 2.

Finally, 313 + 2 + 2 + 23 + 23 = 363 .

10. It is given that the equation x3 + 2x2 + 4x+ 9 = 0 has a unique real solution x such that

b1011xc = −211, 785, 097, 233.

Find the sum of the digits of b1011(x4 + 4)c. Note that brc denotes the greatest integer less
than or equal to r for all real numbers r.

Proposed by Emathmaster

(Answer: 051)

Observe that x3 + 2x2 + 4x + 8 = (x + 2)(x2 + 4). Subtracting 1 from both sides of x3 +
2x2 + 4x + 9 = 0, we get (x + 2)(x2 + 4) = −1. Multiplying both sides by (x − 2), we get
x4 − 16 = −x+ 2. Adding 20 to both sides gives us x4 + 4 = −x+ 22. Therefore, the unique
root x must satisfy x4 + 4 = −x+ 22.

We have that b1011(x4 + 4)c = b1011(−x + 22)c. Since 22 · 1011 is an integer, we may take it
out of the floors, which gives us 22 · 1011 + b−1011xc. Observe that since b1011xc is negative,
we have that b−1011xc = −b1011xc − 1.

Now, we compute 22 · 1011 − b1011xc − 1. We get that

22 · 1011 − b1011xc − 1 = 2, 200, 000, 000, 000 + 211, 785, 097, 233− 1 = 2, 411, 785, 097, 232.

We get that the sum of the digits of this value is 051 .

11. Let ω be the incircle of 4ABC and denote D and E as the tangency points of ω with sides
BC and AB, respectively. Line AD intersects ω at two distinct points, D and F . The circle
passing through E that is tangent to line AD at F intersects line AB at two distinct points, E
and G. Given that AG < AE, AG = 24, EF = 20, and DE = 25, length BE can be written
in the form m

n
, where m and n are relatively prime positive integers. Find the remainder when

m+ n is divided by 1000.

Proposed by P Groudon

(Answer: 417)

We will use the fact that for any circle, the angle θ formed by a tangent line and a chord
of the circle that passed through the tangent line is half the angle of the bounded arc. This
angle θ is equal to the angle measure of an inscribed angle subtending this same arc.

Denote the circumcircle of 4EFG as ω2.

First, we notice that ∠AFG = ∠AEF because of the tangency of ω2 with line AD. Therefore,
4AGF ' 4AFE. Using this, we can write the equation GF

FE
= AG

AF
. Because AG = 24 and

FE = 20, this simplifies to AF ·GF = 24 · 20.
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Angle chasing further, we find that ∠FEG = ∠FDE because of the tangency of ω with line
AB. Because we found earlier that ∠AFG = ∠AEF and ∠AEF = ∠FEG, FG is parallel
to DE. This means that AGF ' AED. We can write AG

GF
= AE

ED
. Because AG = 24 and

ED = 25, this simplifies to AE ·GF = 24 · 25.

Now, we divide the equation AF ·GF = 24 · 20 that we found earlier by AE ·GF = 24 · 25 to
get AF

AE
= 4

5
. Therefore, AF = 4k and AE = 5k for some positive real value k. Using Power of

a Point with respect to ω2, we have AG · AE = AF 2. This equation becomes 24 · 5k = 16k2.
Solving for k, we get k = 15

2
. It then follows that AF = 30 and AE = 75

2
. Using Power of a

Point with respect to ω, we have AE2 = AF · (AF +FD). Plugging in our known values, the
equation becomes 752

22
= 30 · (30 + FD). Solving for FD, we get 135

8
.

We can angle chase using the tangency of ω with AB and BC to find that ∠EFD = ∠BED =
∠BDE. Therefore, 4BED is isosceles with base ED. Call H the foot of the altitude from
B to ED. Because H is the midpoint of ED, we have EH = 25

2
. It then follows that

cos(∠BED) = cos(∠EFD) = 25
2·BE .

We know all the side lengths of 4EFD, which are FD = 135
8
, EF = 20, and DE = 25. Using

these, we can find cos(∠EFD). Since scaling the triangle preserves the cosine of the angle,
we can scale the triangle by a factor of 8

5
to make the side lengths all integers. After the

scaling, FD = 27, EF = 32, and DE = 40. Using the reverse Law of Cosines, we have that
cos(∠EFD) = 272+322−402

2·27·32 . However, 242 + 322 = 402, which means that −242 = 322 − 402.

As a result:

cos(∠EFD) =
272 − 242

2 · 27 · 32

cos(∠EFD) =
(27 + 24)(27− 24)

2 · 27 · 32

cos(∠EFD) =
51 · 3

2 · 27 · 32

cos(∠EFD) =
17

192

Because cos(∠EFD) = 25
2·BE or BE = 25

2
· 1

cos(∠EFD)
, it follows that BE = 2400

17
. So, the

remainder when m+ n is divided by 1000 is 400 + 17 = 417 .

12. The value of
sin9

(
π
18

)
− 1

5 sin
(
π
18

)
− 3 sin2

(
π
18

)
− 15

can be expressed as m
n

for relatively prime positive integers m and n. Find m+ n.

Proposed by Emathmaster

(Answer: 137)

Let x = sin ( π
18

). By the triple sine formula, we have sin(3 · π
18

) = 3x−4x3 = sin(π
6
) = 1

2
. Thus

8x3 − 6x+ 1 = 0. Finally, computing

x9 − 1 = (x3)3 − 1 = (
6x− 1

8
)3 − 1 =

216x3 − 108x2 + 18x− 1

512
− 1

=
27(8x3)− 108x2 + 18x− 1

512
−1 =

27(6x− 1)− 108x2 + 18x− 1

512
−1 =

180x− 108x2 − 28

512
−1
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=
180x− 108x2 − 540

512
=

9

128
(5x− 3x2 − 15).

So, m+ n = 9 + 128 = 137 .

13. Let 4ABC be an acute triangle with BC = 2AC. Let D be the midpoint of BC and E be
the foot of the perpendicular from B to AC. Lines BE and AD intersect at F such that
AF = 2CE. The degree measure of angle C can be written in the form m

n
, where m and n

are relatively prime positive integers. Find m+ n.

Proposed by AIME12345

(Answer: 547)

Let M be the midpoint of AF . We have ME = MA = CE. We also have DE = DC =
DB = AC, where the last step follows from the fact that we are given BC = 2AC. Using
isosceles triangles 4DCA and 4AME, we have that ∠MEA = ∠EAM = ∠CAD = ∠CDA.
It then follows that quadrilateral MCDE is cyclic.

Let x = ∠CDA, then ∠AME = ∠DCA = 180◦ − 2x. Then ∠CEM = 180◦ − x and
∠CME = 90◦ − ∠CEM

2
= x

2
. Then ∠CDE = ∠CME = x

2
so ∠DCE = 90◦ − ∠CDE

2
.

Therefore ∠DCA = 180◦ − 2x = 90◦ − x
4

so x = 360
7

. Then ∠DCA = 90◦ − x
4

= 540
7

. Our

answer is m+ n = 540 + 7 = 547 .

14. Define the function

S(n) =
n∑
k=1

(
k
⌊
n
k

⌋)
for all positive integers n, where brc denotes the greatest integer less than or equal to r for
all real numbers r. Find the sum of all positive integers n such that

S(2n) + S(n− 1)− S(2n− 1)− S(n) = 48.

Proposed by P Groudon

(Answer: 080)

Define σ(n) as the sum of the positive divisors of n. The idea is that we analyze the expression
kbn

k
c combinatorically. The expression bn

k
c counts the number of integers less than n that are

divisible by k. By multiplying this floor by k, we are adding k to our sum for every time k
shows up as a divisor in the integers from 1 to n. Since we have k vary from 1 to n and no
integer greater than n can be a divisor of the numbers 1 to n, this sums up every possible
divisor of every possible integer from 1 to n. Therefore, we have that:

S(n) =
n∑
k=1

(
k
⌊
n
k

⌋)
=

n∑
k=1

σ(k)

Therefore, S(2n) +S(n− 1)−S(2n− 1)−S(n) = 48 becomes σ(2n)− σ(n) = 48. Write n in
the form 2ab, where a is a nonnegative integer and b is an odd integer. Because the function
σ(n) is multiplicative and 2a and b are relatively prime, σ(2n) = (1 + 2 + · · · + 2a+1)σ(b)
and σ(n) = (1 + 2 + · · · + 2a)σ(b). Now our expression becomes 2a+1σ(b) = 48. Now we do
casework on the value of a (while keeping in mind that b is odd).
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Case 1: a = 0

This means that σ(b) = 24. First, we consider if b has three primes in its prime factorization.
Since b is odd, we can’t use 2 as a prime. The bare minimum for σ(b) would be (1 + 3)(1 +
5)(1+7) > 24, so we can’t have 3 primes in the prime factorization. If we consider two primes,
the bare minimum would be (1 + 3)(1 + 5) = 24. This is the absolute bare minimum and
increasing the exponent of any of the primes would increase the LHS. In this case, (1+3)(1+5)
corresponds to b = 15 or n = 15. If we consider 1 prime, we check if the exponent of the prime
can be greater than 1. Obviously, 1 + 3 + 32 + · · ·+ 3k is relatively prime to 24 for all positive
integers values of k and 1 + 5 + 52 > 24 is too big. Therefore, we must have the exponent of
the prime be 1 or 1 + p = 24 for some prime p. This gives p = 23, which is valid and n = 23.

Case 2: a = 1

This means that σ(b) = 12. From our work above, since (1 + 3)(1 + 5) = 24 and because we
will be increasing the value of a, which decreases the value of σ(b), we can only have 1 prime
in the prime factorization of b. Once again, 1 + 3 + 32 + · · ·+ 3k is relatively prime to 12 for
all positive integers values of k and 1 + 5 + 52 > 12 is too big. So we must have 1 + p = 12,
which gives p = 11. Therefore b = 11, a = 1, and n = 22.

Case 3: a = 2

This means that σ(b) = 6. Once again, 1 + 3 + 32 + · · · + 3k is relatively prime to 6 for all
positive integers values of k and 1 + 5 + 52 > 6 is too big. So we must have 1 + p = 6. This
gives p = 5, b = 5, a = 2, and n = 20.

Case 4: a = 3

This means that σ(b) = 3. We must have 1 + p = 3. This gives p = 2, but this is impossible
since b is odd. So there are no solutions in this case.

Alternatively, to locate values of odd integers x such that σ(x) = 24, σ(x) = 12, σ(x) = 6,
and σ(x) = 3, one could use the fact that σ(x) > x for all positive integers x. Therefore, one
manually test the values of σ(x) for odd integers x in the closed interval [1, 23].

We have exhausted all cases, so the answer is 23 + 15 + 22 + 20 = 080 .

15. In cyclic quadrilateral ABCD, CD is extended past C to intersect line AB at B′, and AD is
extended past D to intersect line BC at point D′. The circumcircles of 4BB′C and 4DD′C
intersect at another point C ′, where C ′ 6= C. Given that B′C ′ = 12, B′B = D′C ′ = 8, and
D′D = 4, length AC ′ can be expressed as a

√
b, where a and b are positive integers and b is

not divisible by the square of any prime. Find a+ b.

Proposed by Awesome guy

(Answer: 040)

First, let us make the following claims:

Claim 1: B′, C ′, and D′ are collinear.

Proof: We know that since ABCD is cyclic, ∠ABC + ∠ADC = 180◦.

Note that since CC ′DD′ is cyclic, ∠D′C ′C + ∠D′DC = 180◦. Also note that ∠ADC +
∠D′DC = 180◦. Thus ∠ADC = ∠D′C ′C.

Similarly, note that since CC ′BB′ is cyclic, ∠B′C ′C + ∠B′BC = 180◦. Also note that
∠ABC + ∠B′BC = 180◦. Thus ∠ABC = ∠B′C ′C.

Substituting in, we have ∠ABC + ∠ADC = ∠B′C ′C + ∠D′C ′C = 180◦, hence proved.
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Claim 2: AB′C ′D is cyclic.

Proof: We know by definition ABCD is cyclic. Thus ∠BAD + ∠BCD = 180◦, or ∠BAD =
∠D′CD. We know that since CC ′DD′ is cyclic and both ∠D′CD and ∠D′C ′D subtend to
>
DD

′
, ∠D′C ′D = ∠BAD = ∠B′AD. Thus ∠B′C ′D + ∠B′AD = 180◦, hence proved.

Claim 3: ABC ′D′ is cyclic.

Proof: Similarly, we know by definition ABCD is cyclic. Thus ∠BAD + ∠BCD = 180◦, of
∠BAD = ∠B′CB. We know that since CC ′BB′ is cyclic, ∠B′CB and ∠B′C ′B subtend to
>
BB
′
, ∠B′C ′B = ∠BAD = ∠BAD′. Thus ∠BC ′D′ + ∠BAD′ = 180◦, hence proved.

AB

C

D

B′

D′

C ′

By Power of a Point with respect to the circumcircle of AB′C ′D, we know D′C ′ · D′B′ =
D′D ·D′A. Plugging in we have 8 · 20 = 4 ·D′A, and thus D′A = 40.

By Power of a Point with respect to the circumcircle of ABC ′D′, we know B′B · B′A =
B′C ′ ·B′D′. Plugging in we have 8 ·B′A = 12 · 20, and thus B′A = 30.

Using Stewart’s theorem with respect to 4AB′D′ and cevian AC ′, we know AD′2 · B′C ′ +
AB′2 · C ′D′ = AC ′2 ·B′D′ +B′D′ ·B′C ′ · C ′D′. Plugging in we have

402 · 12 + 302 · 8 = AC ′2 · 20 + 20 · 12 · 8

19200 + 7200 = AC ′2 · 20 + 1920

AC ′2 = 1224

AC ′ = 6
√

34.

Thus a+ b = 6 + 34 = 040 .


