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1. There are 9 large monkeys and 10 little monkeys who want some bananas. Each little monkey
needs 1 banana to be full, while each large monkey needs 2 bananas to be full. Given that
there are 15 bananas, what is the maximum amount of monkeys that can become full?

(A) 8 (B) 10 (C) 11 (D) 12 (E) 13

Proposed by PCChess

Answer (D): The little monkeys take less space so we first use the 10 of them up. Afterwards,

we have 5 bananas, 2 monkeys so our answer is 10 + 2 = (D) 12 .

2. The three digit number 5A2 is divisible by 4. What is the sum of the possible values of the
digit A?

(A) 10 (B) 14 (C) 15 (D) 20 (E) 25

Proposed by Emathmaster

Answer (E): By the divisibility by 4 rule, the number formed by the last two digits of 5A2
must be divisible by 4, so we can disregard the 5 in the hundreds place.

Clearly 02 is not divisible by 4, but 12 is. We notice that 10 is not divisible by 4, but 20 is, so
12 + 20 · k for some nonnegative integer k will be divisible by 4. It then follows that A must

be odd, so A can be 1, 3, 5, 7, or 9. Our answer is (E) 25 .
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(A) 4
√

2 (B) 6 (C) 8
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2 (D) 6 + 4
√

2 (E) 12
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Proposed by Emathmaster

Answer (E): To remove the radicals from the denominator, we multiply the denominator
and numerator by the conjugate:(

1
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2

)
·

(
3 + 2

√
2

3 + 2
√
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)
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√
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1

3 + 2
√

2

)
= 3− 2

√
2

Adding everything up gives us (E) 12 .

4. On a ten-question True/False test, Neel only knows the answer to three of the questions! As
a result, he flips a fair coin to determine his answers for the rest of the questions. Given that
a passing grade is anything above 60% in Neel’s school and that he correctly answers all three
questions where he knows the answer to, what is the probability that Neel passes the test?

(A) 11
64

(B) 29
128

(C) 193
512

(D) 1
2

(E) 99
128

Proposed by kevinmathz

Answer (D): Neel needs at least 4 of the last 7 because a passing grade is above 60%. Thus,
by symmetry, getting 3 and 4 are symmetric, and so are 2 and 5, 1 and 6, and 0 and 7, so the

probability Neel passes the test is (D)
1

2
.

5. Let ABC be an equilateral triangle. Next, let D be on the extension of BC past point B such
that ∠BAD = 30◦, and let E be on the extension of BC past point C such that ∠EAC = 30◦.
If BC = 2, what is the area of DAE?

(A) 2
√

2 (B) 3 (C) 2
√

3 (D) 3
√

3 (E) 6

Proposed by Ish Sahh

Answer (D): We see that the base of 4DAE has length 6 and the height has length
√

3.

Thus, the area is 1
2
· 6 ·
√

3 = (D) 3
√

3 .

6. Call an ordered pair of positive primes (a, b) cool if a = b− 10. Suppose that for some integer
n, there exists a list of primes P1, P2, . . . , Pn such that (Pi, Pi+1) is cool for all 1 ≤ i ≤ n− 1.
What is the largest possible value of n?

(A) 2 (B) 3 (C) 4 (D) 5 (E) 10

Proposed by PCChess
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Answer (B): If n ≥ 3, it is guaranteed that at least one number is divisible by 3. This means
that n can be maximized by making P1 = 3. Checking, the list of numbers 3, 13, 23 works, so

the answer is (B) 3 .

7. At Lexington High School, it is customary for people to not use adjacent stalls in a bathroom.
Some (possibly empty) subset of five different kids want to use a row of four stalls at the same
time. In how many ways can they do so?

(A) 53 (B) 57 (C) 81 (D) 93 (E) 141

Proposed by Emathmaster

Answer (C): We do casework based on how many stalls are occupied.

Case 1: No stalls occupied

There is 1 case here.

Case 2: 1 stall occupied

We may choose any of the 5 students and any of the 4 stalls. So we have 5 · 4 = 20 cases here.

Case 3: 2 stalls occupied

In order for no two adjacent stalls to be occupied, we can either have stalls 1 and 3 occupied,
stalls 2 and 4 occupied, or stalls 1 and 4 occupied. This gives 3 different acceptable config-
urations. We may choose any of the 5 students to go in the left stall and then any 4 of the
remaining students in the other stall. This gives 3 · 5 · 4 = 60 cases here.

Case 4: 3 stalls occupied

This would require some two adjacent stalls, so we cannot have 3 stalls occupied.

In total, this gives us 1 + 20 + 60 = (C) 81 ways.

8. Let x be a positive integer such that

ix
4−3x3+5x2+7x−11 = ix

3+2x2+5x+3,

where i =
√
−1. Find the set of all possible remainders when x is divided by 4.

(A) ∅ (B) {1} (C) {0, 1} (D) {0, 3} (E) {1, 3}

Proposed by jeteagle

Answer (E): For ix
4−3x3+5x2+7x−11 = ix

3+2x2+5x+3, we require the exponents to be congruent
in modulo 4.

Therefore, we want x4 − 3x3 + 5x2 + 7x− 11 ≡ x3 + 2x2 + 5x+ 3 (mod 4).

Moving all the terms to one side and taking mod 4 of the coefficients:

x4 − 4x3 + 3x2 + 2x− 14 ≡ 0 (mod 4)

x4 − x2 + 2x+ 2 ≡ 0 (mod 4)
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We notice that if x is even, each of the terms on the left hand side will be divisible by 4 except
the 2. Therefore, if x is even, we get 2 ≡ 0 (mod 4), which is a contradiction.

Now, suppose x is odd, which means x ≡ ±1 (mod 4). Then x to even power is congruent to
1 (mod 4), so the x4 and x2 cancel each other out. We can check that if we plug in x ≡ ±1

(mod 4) to 2x+2 (mod 4), both values work. Therefore, the set of remainders is (E) {1, 3} .

9. To celebrate Bela’s birthday, Jenn decides to make a cake in the shape of a right cylinder
with a radius of 2 and a height of 10. Strangely, Jenn covers the entire outside (including the
bottom) of the cake with frosting and cuts the cake such that each cut is parallel to the base
of the cake, and each resulting slice is a cylinder. There is only sponge and no frosting on the
inside of the cake. On each slice, Jenn wants the amount of frosting to be the same. If Jenn
cuts the cake into 8 parts, what is the height of the slice that contains the top of the cake?
(Assume the frosting has negligible thickness.)

(A) 1
4

(B) 1
2

(C) 2
3

(D) 1 (E) 6
5

Proposed by PCChess

Answer (B): The surface area is 2 · 22π + 2π2 · 10 = 48π. This means that each slice has 6π

of frosting. Solving 6π = 22π + 2π2h, we get that h = (B)
1

2
.

10. For a positive composite integer n, let S be the set of divisors of n greater than 1 and less
than n. Given that a and b are the smallest and largest elements of S, respectively, what is
the sum of all n with b

a
= 15?

(A) 150 (B) 165 (C) 180 (D) 195 (E) 210

Proposed by Emathmaster

Answer (D): Suppose n has k divisors. Label the divisors as follows 1 = d1 < d2 < d3 <
... < dk−1 < dk = n

Clearly, d2 = a and dk−1 = b. In addition, d2 · dk−1 = n. In conjunction with dk−1 = 15d2,
this tells us that n = 15 · (d2)2. Because n and d2 are integers, n must have a factor of 3 and
a factor of 5. This means we must have d2 = 2 or d2 = 3. These give us n = 60 and n = 135,

respectively, so our answer is (D) 195 .

11. Every element in nonempty set S is a distinct nonnegative integer less than or equal to 16.
The product of the elements is not divisible by 8 and there are at most 2 odd numbers in S.
Let N be the number of possible sets that can be S. Find the sum of the digits of N .

(A) 12 (B) 13 (C) 15 (D) 16 (E) 17

Proposed by kevinmathz

Answer (A): Since S is not divisible by 8, the multiples of 8 are out of consideration. Now
we check evens and multiples of 4. At the end, we multiply by

(
8
0

)
+
(
8
1

)
+
(
8
2

)
= 37.
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Evens not divisible by 4: We have 2, 6, 10, 14. Multiples of 4 but not 8: We have 4, 12.

Our number can be odd, or even but not divisible by 8. Thus, we add our number of ways to
choose this, which is thus

(
4
2

)
+
(
4
1

)
+
(
2
1

)
+ 1 = 13. Our answer is thus 37 · 13− 1 = 480. We

subtract by 1 because we cannot include the empty subset. The sum digits of sum of digits is

(A) 12 .

12. Call two integers (a, b) friends if there is at least one integer x such that (x− a)(x− b) is an
integral power of 2. How many ordered pairs of friends (a, b) satisfy 1 ≤ a, b ≤ 7?

(A) 41 (B) 43 (C) 45 (D) 47 (E) 49

Proposed by Emathmaster

Answer (C): We see that the positive difference between a and b must be a difference of
powers of 2, both less than 4 because our bound is 6. That leaves us the following differences:
0, 1, 2, 3, 4, 6.

We thus see there are a total of 14 − 2n ways to form the numbers if the differences is n so

we sum up: 7 + 12 + 10 + 8 + 6 + 2 = (C) 45 .

13. Alice and Bob play a game. Alice goes first and they alternate between turns. In this game,
an unfair coin is flipped. Alice wins if it is her turn and she flips heads; Bob wins if it is his
turn and he flips tails. If the game is a fair game (i.e. both players have an equal chance of
winning), what is the probability that the coin flips heads on a given flip?

(A)
√
5−1
4

(B) 1
3

(C) 3−
√
5

2
(D) 2

5
(E) 1

2

Proposed by kevinmathz

Answer (C): Let p be the probability that the coin flips heads. The probability Alice wins
can be written as p + pr + pr2 + pr3 + · · · , where r = ratio = p(1 − p) because Tail-Heads
has to be rolled to cycle. With the formula, we see that we have the total probability as

p
1−p(1−p) = 1

2
, so thus, p2 − 3p + 1 = 0, so using the quadratic formula gets p = 3±

√
5

2
. Since

our answer is less than 1, it is (C)
3−
√

5

2
.

14. Let α and β be angles in Quadrants I or IV of the unit circle satisfying

log3(cosα) + log3(cos β) = −1 and cos(α + β) =
2

15
.

What is
tan(α + β)

tanα + tan β
?

(A) 3
2

(B) 5
3

(C) 5
2

(D) 3 (E) 5

Proposed by Emathmaster
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Answer (C): Using logarithm rules for log3(cosα)+log3(cos β) = −1, we get cosα·cos β = 1
3
.

We can also expand cos(α + β) = 2
15

as such: cosα · cos β − sinα · sin β = 2
15

. Therefore,
sinα · sin β = 1

5
.

Since tan(α + β) = tanα+tanβ
1−tanα·tanβ , we want the value of 1

1−tanα·tanβ .

Dividing the equation sinα · sin β = 1
5

by cosα · cos β = 1
3
, we get tanα · tan β = 3

5
. Plugging

this into 1
1−tanα·tanβ , we get (C)

5

2
.

15. Let τ be a function such that for all positive integers n, τ(n) denotes the number of positive
divisors n has. Given that there are two possible values of n such that τ(n+ 1)− τ(n) ≥ 14,
where n < 200, what is the sum of the digits of the smaller value of n?

(A) 10 (B) 11 (C) 14 (D) 16 (E) 17

Proposed by Emathmaster

Answer (C): Clearly, n = 1 and n = 2 does not satisfy the inequality. Therefore, we will
assume that τ(n) ≥ 2. This means that τ(n + 1) ≥ 16. We will first search for integers with
τ(n + 1) = 16. Note that n + 1 is even if we elect for τ(n + 1) = 16 because that implies
τ(n) = 2, which means n is prime, and since 2 doesn’t work, it must be an odd prime.

Now, we search for integers whose prime factorizations are in the form p15, p7 ·q, p3 ·q3, p3 ·q ·r,
and p · q · r · s. We’ll focus more on the last 2, since they will most likely help us minimize n.
We realize that 2 · 3 · 5 · 7 = 210 is too big. We also realize that 23 · 3 · 5− 1 = 119 is also not
prime. However, 23 · 3 · 7− 1 = 167 is prime.

We claim that the smallest possible value of n is 167.

Now, we will look at the other prime factorizations that give us τ(n + 1) = 16. Clearly, 215

is much bigger than 200. 27 · 3 = 384 is also too big. 23 · 33 = 216 is also too big. If we try
n + 1 = p3 · q · r with q < r, first we will assume p = 2 then assume q = 2. If p = 2 and
q > 3, then 23 · 5 · 7 = 280 > 200, so p = 2 implies q = 3. Since we already tested 23 · 3 · 5 and
23 · 3 · 7, we test q = 11. However, 23 · 3 · 11 = 8 · 33 > 200 is too big. If we assume q = 2,
then n+ 1 has to be at least 33 · 2 · 5 = 270 > 200, which is a contradiction. Therefore, there
are no other solutions with τ(n+ 1) = 16 with n < 200.

If we have τ(n+ 1) = 17, then n+ 1 = p16 at the minimum. However, 216 is much bigger than
200, so we suspect for a solution in τ(n+ 1) = 18.

The minimum possible value of n+1 with τ(n+1) = 18 must be n+1 = p2·q2·r = 22·32·5 = 180.
Because n = 179, which is prime, n = 179 must be another solution. Since we are given that
there are two solutions, n = 167 and n = 179 are the two solutions in question. The smaller

is 167, which has a digit sum of (C) 14 .

16. Big Zhao and Little Zhao are playing a game where they take turns tiling a n by n plane with
circular tiles of radius n

10
where n ≥ 20. No tiles can overlap or go off the edge. A player wins

in this game if the other player is unable to place a tile during their turn. If Big Zhao starts
first, and both players play using optimal strategy, who will win?

(A) Little Zhao will always win. (B) Big Zhao will always win.
(C) Little Zhao will win if and only if

⌈
n
π

⌉
is even.



2020 TMC 12A Problems and Solutions Document 7

(D) Big Zhao will win if and only if
⌈
n
π

⌉
is even.

(E) Little Zhao will win if and only if n ≤ 100.

Proposed by jeteagle

Answer (B): We will prove Big Zhao will always win. First, let Big Zhao tile the center
of this n by n plane. Now, every time Little Zhao places his tile, Big Zhao can tile his tile
directly opposite of it from the center of the plane. If Little Zhao is able to tile his tile at some
place, then Big Zhao will also because the tiling is symmetric across the center. Therefore,
Big Zhao will be able to mirror Little Zhao’s placements, and he will never run out of tiling

places unless Little Zhao runs out first. This means (B) Big Zhao will always win.

17. There are M polynomials P (x) such that, for all real values of x,

(x3 + x2 − 4x− 4) · P (x) = (x− 4) · P (x2),

and the leading coefficient of P (x) is an integer with an absolute value of at most 5. Suppose
the sum of all possible values of P (3) is N . What is M +N?

(A) 1 (B) 9 (C) 10 (D) 11 (E) 264

Proposed by kevinmathz and Awesome guy

Answer (D): We can factor x3 + x2 − 4x− 4 as follows:

x2(x+ 1)− 4(x+ 1)

(x2 − 4)(x+ 1)

(x+ 2)(x− 2)(x+ 1)

Therefore, (x+ 2)(x− 2)(x+ 1) · P (x) = (x− 4) · P (x2).

Plugging in x = ±2, we get 0 = P (4). Therefore, P (x) = Q(x)(x − 4) for some polynomial
Q(x). Substituting this back into our equation, we get:

(x+ 2)(x− 2)(x+ 1)(x− 4) ·Q(x) = (x− 4)(x2 − 4) ·Q(x2)

Cancelling the common factors on both sides, we get:

(x+ 1) ·Q(x) = Q(x2)

Plugging in x = −1 tells us that 0 = Q(1). Therefore, Q(x) = (x−1)R(x) for some polynomial
R(x). Substituting this back and cancelling common factors, we get:

R(x) = R(x2)

Since this relation must hold for all real x and because the degree of R(x2) is double the
degree of R(x), we must have R(x) be a constant polynomial. Let R(x) = a for some real
number a. Retracing our steps:

P (x) = a(x− 4)(x− 1)
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The leading coefficient in P (x) is a, so a can be any integer from −5 to 5, inclusive. This
counts the zero polynomial as well. Therefore, M = 11.

We also have that P (3) = −2a, but the sum of the integers from −5 to 5, inclusive is 0.

Therefore, N = 0, so M +N = (D) 11 .

18. Denote point C on circle ω with diameter AB. The tangent lines to ω from A and C intersect
at point D, with BC = 5 and CD = AD = 3. What is the length of AB?

(A) 6 (B) 3
√

5 (C) 5
√

2 (D) 6
√

2 (E) 9
√

3

Proposed by Awesome guy

Answer (B): Denote r as the radius of the circle. We seek the value of 2r. Define O as the
center of the circle. Denote E as the foot of the altitude from O to BC. E is the midpoint of
BC.

Clearly, DO bisects ∠ADC. Let ∠ADO = ∠ODC = θ. Because ∠DAO = ∠DCO = 90, we
have that ∠AOD = ∠DOC = 90−θ. Because ∠AOC+∠COB = 180 and OE bisects ∠COB,
we have that ∠COE = θ. Because ∠DAO = ∠OEC = 90, it follows that 4DAO ' 4OEC.
We then proceed to length chase.

We know that CE = 5
2

and CO = r. We also know that DA = 3 and AO = r. Through

Pythagorean Theorem on 4DAO, we have that DO =
√
r2 + 9. Using the similar triangles,

DO
OA

= OC
CE

. Plugging in the known lengths and clearing denominators, we arrive at 2r2 =

5
√
r2 + 9. After squaring both sides and moving all the terms to one side, we get 4r4−25r2−

225 = 0. Solving the quadratic in terms of r2, we find that r2 = 45
4

(disregarding the negative

root). It then follows that r = 3
√
5

2
and our answer is (B) 3

√
5 .

19. Let
(1 + 23i)(2 + 22i) · · · (23 + i) = a+ bi

for integers a and b. What is the remainder when a− b is divided by 7?

(A) 1 (B) 2 (C) 3 (D) 4 (E) 5

Proposed by Emathmaster

Answer (A): Notice that for n = 1, 2, 3, 4, ..., 11:

(n+ (24− n)i)(24− n+ ni) = i((24− n)2 + n2)

Therefore, (1 + 23i)(2 + 22i) · · · (23 + i) = (12 + 12i) ·
∏11

n=1[i((24− n)2 + n2)]

Pulling the i out of the product:

= (12 + 12i) · i11 ·
11∏
n=1

((24− n)2 + n2)

= (12 + 12i) · −i ·
11∏
n=1

((24− n)2 + n2)
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= (12− 12i) ·
11∏
n=1

((24− n)2 + n2)

Let P =
11∏
n=1

((24− n)2 + n2).

Then, a = 12P and b = −12P , so we seek the remainder when 24P or 3P is divided by 7.

By bashing out P in mod 7, we arrive at P ≡ 5 (mod 7), so 3P ≡ 1 (mod 7). Therefore, the

remainder when a− b is divided by 7 is (A) 1 .

20. In convex quadrilateral ABCD, ∠A = 90◦, ∠C = 60◦, ∠ABD = 25◦, and ∠BDC = 5◦.
Given that AB = 4

√
3, find the area of quadrilateral ABCD.

(A) 4 (B) 4
√

3 (C) 8 (D) 8
√

3 (E) 16
√

3

Proposed by DeToasty3

Answer (D): We claim that if we reflect point C across the perpendicular bisector of line
segment BD to get point C ′, then we get a right triangle ABC ′, where point D is on side
AC ′. We see that this happens because ∠ABC ′ = ∠BDC ′ + ∠ABD = 5◦ + 25◦ = 30◦,
∠BC ′D = ∠BC ′A = 60◦, and ∠BAC ′ = 90◦. We also know that ∠ADC ′ = ∠BDA +
∠BDC ′ = (180◦ − 90◦ − 25◦) + (180◦ − 60◦ − 5◦) = 65◦ + 115◦ = 180◦, so point D is on side
AC ′. By extension, we now know that right triangle ABC ′ is a 30 − 60 − 90 right triangle,
where ∠A = 90◦, ∠B = 30◦, and ∠C ′ = 60◦.

We know that right triangle ABC ′ has the same area as quadrilateral ABCD because triangles
BCD and BC ′D have the same areas (this reflection preserves areas), and triangle ABD is
unchanged. Since we are given that AB = 4

√
3, it follows that the other leg, AC ′, has length

4. We have that the area of right triangle ABC ′, and thereby the area of quadrilateral ABCD,

is 1
2
· 4 · 4

√
3 = (D) 8

√
3 .

21. Consider a triangle 4ABC with circumcircle ω, AB = 13, AC = 5, BC = 12. Let l be the
line parallel to AB passing through C and let l∩ω be P . Let the projection of P onto AC be
D, and define E similarly for AB. Let PE meet ω again at K and let PD ∩ CK = G. Then
GK = m

n
where m and n are integers. Find m+ n.

(A) 301 (B) 303 (C) 305 (D) 479 (E) 502

Proposed by realquarterb

Answer (A): Notice that CK is a diameter since ∠CPK = 90◦ (by construction) and CPKA
is cyclic. Thus, CK = 13. Let F be the foot of the projection of P onto BC. Since CDPF is
a rectangle, CD = PF . Since CPBA is an isosceles rectangle, we get that its height is 5

13
∗ 12

and CP = 119
13

giving PF = CD = 595
169

. Then, by 4CGD ∼ 4CAK, we get CG = 119
13

. Thus,

GK = GC + CK = 119
13

+ 13 = 288
13

. So the answer is (A) 301 .
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22. For positive integers m and n, define f(m,n) =
⌊(
m+ 1

n

) (
n+ 1

m

)⌋
. Then, let

S =
∑
m,n>0

m+n≤2020

f(m,n).

Find the sum of the digits of the remainder when S is divided by 1000. (Here, bxc is the
greatest positive integer less than or equal to x.)

(A) 8 (B) 10 (C) 12 (D) 14 (E) 16

Proposed by Emathmaster

Answer (E): We notice that by expanding, f(m,n) =
⌊(
m+ 1

n

) (
n+ 1

m

)⌋
= mn+ 2 + b 1

mn
c.

The value b 1
mn
c evaluates to 0 if mn > 1. The only pair in our sum with mn ≤ 1 is (1, 1), in

which the floor evaluates to 1. Therefore, S =
∑
m,n>0

m+n≤2020

f(m,n) = 1 +
∑
m,n>0

m+n≤2020

mn+ 2.

We will break up S into two parts:

A =
∑
m,n>0

m+n≤2020

mn

B =
∑
m,n>0

m+n≤2020

2

To evaluate A, we first fix m and then plug in all the valid values of n:

A = 1(1+2+3+4+...+2019)+2(1+2+3+4+...+2018)+3(1+2+3+4+...+2017)+...+2018(1+2)+2019(1).

Recall that 1 + 2 + 3 + 4 + ...+ n = n(n+1)
2

=
(
n+1
2

)
.

Therefore,

A = 1

(
2020

2

)
+ 2

(
2019

2

)
+ 3

(
2018

2

)
+ ...+ 2018

(
3

2

)
+ 2019

(
2

2

)
.

We can break up A as:(
2020

2

)
+

(
2019

2

)
+

(
2018

2

)
+ ...+

(
3

2

)
+

(
2

2

)
=

(
2021

3

)

+

(
2019

2

)
+

(
2018

2

)
+

(
2017

2

)
+ ...+

(
3

2

)
+

(
2

2

)
=

(
2020

3

)

+

(
2018

2

)
+

(
2017

2

)
+

(
2016

2

)
+ ...+

(
3

2

)
+

(
2

2

)
=

(
2019

3

)

+...
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+

(
3

2

)
+

(
2

2

)
=

(
4

3

)

+

(
2

2

)
=

(
3

3

)
,

where the binomial coefficient on the right hand side of each equation follows from the Hockey
Stick Identity. Then, we use the Hockey Stick Identity again:

A =

(
2021

3

)
+

(
2020

3

)
+

(
2019

3

)
+ ...+

(
4

3

)
+

(
3

3

)
=

(
2022

4

)
Now, we will evaluate B. To turn m and n from positive integers to nonnegative integers,
make the substitution m′ = m − 1 and n′ = n − 1. Then, m′ + n′ ≤ 2018. Suppose that
2018−m′ − n′ = p. Because m′ + n′ ≤ 2018, p is a nonnegative integer. Therefore, we have
m′ + n′ + p = 2018 for nonnegative integers m′, n′, and p. By stars and bars, we have

(
2020
2

)
.

Since we add 2 for each valid (m,n) pair, we have that B = 2
(
2020
2

)
.

Finally, S ≡ 1 + A+B (mod 1000)

S ≡ 1 +

(
2022

4

)
+ 2

(
2020

2

)
(mod 1000)

S ≡ 1 + 815 + 380 ≡ 196 (mod 1000)

The sum of the digits of 196 is (E) 16 .

23. In triangle 4ABC, suppose AB = 2017 and AC = 2020. If I denotes the incenter of 4ABC,
extend AI past I to intersect the circumcircle of 4ABC again at D. If the area of 4BIC is
half of the area of 4BCD, BC = m

n
for relatively prime positive integers m and n. What is

the remainder when m+ n is divided by 100?

(A) 77 (B) 78 (C) 79 (D) 80 (E) 81

Proposed by P Groudon

Answer (A): Define E as the point of tangency with the incircle of 4ABC and AC. Define
F as the point of tangency with the incircle of 4ABC and AB. Let G be the foot of the
altitude from D to BC. Because BD = CD, G is the midpoint of BC.

Now, we will use the condition where the area of 4BIC is half of the area of 4BCD. Denote
r as the inradius of 4ABC. Since 4BIC and 4BCD share the same base and have an
area ratio of 1 : 2, the height of 4BIC with respect to base BC is r. By the area ratio,
DG = 2r. By cyclic quadrilateral ABCD and isosceles triangle 4BCD, ∠GCD = ∠BCD =
∠DAE = ∠IAE. Because ∠IEA = ∠CGD = 90◦, 4AEI ' 4CGD. Suppose AE = k. By
the similarity, GC = 2k.

Now, we chase lengths. With GC = 2k, we have BC = 4k. By Two-Tangent Theorem,
4k = BC = BF + EC. Clearly BF = 2017 − k and EC = 2020 − k. Solving for 4k, we get
8074
3

, so the answer is (A) 77 .
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24. Define s(k) as the period of the decimal expansion of 1
k
. Let S be the set of integers that are

greater than 1 and can be written in the form 3a · 7b, where a and b are nonnegative integers.
What is the value of 1

s(k)
summed over all k ∈ S?

(A) 19
6

(B) 229
72

(C) 27
8

(D) 11
3

(E) 271
72

Proposed by AIME12345

Answer (C): We will break the sum
∑
k∈S

1

s(k)
into three pieces:

A =
∞∑
a=1

1

s(3a)

B =
∞∑
b=1

1

s(7b)

C =
∞∑
a=1

∞∑
b=1

1

s(3a · 7b)

For a certain decimal, let d be the integer formed by the repeating block of the decimal. For
example, in the decimal 0.121212...., d = 12. Then, we can write 1

k
as such:

d

10s(k)
+

d

102s(k)
+

d

103s(k)
+ · · · = 1

k
.

The LHS is an infinite geometric series with a first term of d
10s(k)

and a common ratio of 1
10s(k)

.
By the formula for the sum of an infinite geometric series, we get:

d

10s(k) − 1
=

1

k
.

We clear the denominators to get:

10s(k) − 1 = dk.

Because d is an integer, we can take both sides of the equation in modulo k:

10s(k) − 1 ≡ 0 (mod k).

Clearly, s(k) equals the smallest positive integer n for which 10n − 1 ≡ 0 (mod k) holds.

First, we will consider the evaluation of s(3a).

Since 31 and 32 divide 10− 1 = 9 but not 33, s(31) = 1 and s(32) = 1.

Define vp(n) as the largest nonnegative integer m for which pm divides n. Since 3 is divisible
by (10− 1), we may apply Lifting the Exponent.

v3(10s(k) − 1) = v3(9) + v3(s(k)).

Since k = 3a and we are working in modulo 3a, we want v3(10s(k) − 1) = a.

Therefore, using v3(10s(k) − 1) = v3(9) + v3(s(k)), we find that a− 2 = v3(s(k)).
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The smallest possible value s(k) can equal here is 3a−2. Therefore, for a ≥ 3, s(3a) = 3a−2,
but s(3) = 1 and s(9) = 1.

It immediately follows that:

A =
∞∑
a=1

1

s(3a)
= 1 + (1 +

1

3
+

1

9
+ ...) =

5

2
.

Next, we will use a similar process to evaluate s(7b).

We can’t apply Lifting the Exponent directly because (10− 1) is not divisible by 7. However,
a quick check shows us that n = 6 is the smallest positive integer n for which 10n − 1 is

divisible by 7. Let t(7b) = s(7b)
6

.

106t(7b) − 1 ≡ 0 (mod 7b).

Now, we may apply Lifting the Exponent:

v7(106t(7b) − 1) = v7(999999) + v7(t(7
b)).

We want v7(106t(7b)−1) = b because we are working in modulo 7b. In addition v7(999999) = 1.
Therefore,

b− 1 = v7(t(7
b))

t(7b) = 7b−1

s(7b) = 6 · 7b−1.

Therefore, B =
∞∑
b=1

1
s(7b)

= 1
6
(1 + 1

7
+ 1

49
+ ...) = 7

36

Now, we will evaluate s(3a · 7b). Clearly s(3a · 7b) = lcm(s(3a), s(7b)) = lcm(s(3a), 6 · 7b−1).
We remember earlier that s(31) = s(32) = 1. However, for a ≥ 3, s(3a) = 3a−2. When a = 1
or a = 2, vp(s(3

a)) is always strictly less than vp(6 · 7b−1). However, when a ≥ 3, we have
vp(s(3

a)) ≥ vp(6 · 7b−1).

Therefore, for a = 1 and a = 2:
∞∑
b=1

1
s(3a·7b) = 7

36
.

However, for a ≥ 3:
∞∑
b=1

1
s(3a·7b) = 7

36·3a−3 .

For our final sum:

A+ B + C =
5

2
+ 3 · 7

36
+
∞∑
a=3

∞∑
b=1

1

s(3a · 7b)

37

12
+
∞∑
a=3

7

36 · 3a−3

37

12
+

7

24

(C)
27

8
.
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25. For a given permutation of 1, 2, 3, 4, 5, 6, denote an as the nth element in the permutation. A
non-empty subset S of {1, 2, 3, 4, 5, 6} has property P if for every k in S, the value ak (not
necessarily distinct from k) is also in S. In addition, a subset S has property Q if it has
property P and no proper subsets of S have property P . For how many permutations of
1, 2, 3, 4, 5, 6 do there exist sets A and B that satisfy the following conditions?

(a) A and B contain no elements in common.

(b) A and B both have property Q.

(c) The union of A and B is {1, 2, 3, 4, 5, 6}.

(A) 260 (B) 274 (C) 295 (D) 312 (E) 336

Proposed by P Groudon

Answer (B): Draw a graph with 6 nodes and label them with the integers 1 through 6.
Because a permutation is a bijective mapping of {1, 2, 3, 4, 5, 6} onto itself, each node must
have one directed edge entering the node and one directed edge exiting the node. The directed
edge will point from n to an. For example, a1 = 4 can be represented as the node with label 1
having a directed edge pointing to the node of label 4. Note that the directed edge can point
back to its original node such as when we have a1 = 1.

We can show that when we draw a graph of the permutation. It will be comprised solely of
disjoint loops, possibly more than 1.

Take an arbitrary node. It can either point to itself, in which case it forms a loop on its own.
If it points to a second node, that second node must point back to the first node or point to
some other unused node. If it points to a third node, the third node can point back to the first
node or some other unused node. This fashion continues. We can end up including all 6 nodes
in a single continuous loop or end the loop prematurely. If we end the loop prematurely, the
remaining nodes must also form loops. Therefore, our graph will be solely made up of disjoint
loops. Because the permutation is bijective, every node will be included in some loop.

A loop of a length of 1 node would appear as ai = i for some integer i in the interval [1, 6]. A
loop of a length of 2 nodes would appear as ai = j and aj = i where i 6= j. A loop of a length
of 3 nodes would appear as ai = j, aj = k, and ak = i where i 6= j 6= k and so on for loops of
longer lengths.

Clearly, for a subset A of {1, 2, 3, ..., 6} to have property P , A must contain some subset of
the set of complete loops in the graph. If A contains an incomplete loop, then we can consider
one of the elements that is in A and is a member of the incomplete loop. Then, one of those
elements in A must map to an element outside of A, so that mapped element will be outside
of A. This is a contradiction based on our definition of property P . Therefore, for a subset A
to have property P it must contain some number of complete loops.

We claim that a subset A of {1, 2, 3, ..., 6} satisfies property Q if it contains only 1 complete
loop. For the sake of the contradiction, assume that the elements of A are in more than 1
loop. That means we have at least 2 loops in the graph of A. Call the loops L1, L2, and so on.
The subset containing the elements involved in L1 satisfies property P because every element
in the loop points to some other element in the loop, which is a contradiction. Therefore, A
satisfies property Q if it represents 1 complete loop in the graph of the permutation.

Now, we can begin counting the permutations. By the condition that A and B are disjoint
and that they both have property Q, A and B must each correspond to distinct loops in the
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graph. To satisfy the condition where the union of A and B is {1, 2, 3, 4, 5, 6}, we must have
exactly 2 loops in the graph.

There are 3 different ways we can break up the loop sizes: 5+1, 4+2, or 3+3.

Suppose we have n members to be put in a loop. Arrange the n elements in a circle where
the order of the mapping is determined clockwise. For example, if 1, 3, and 5 appear in the
circle in that clockwise order, that represents a1 = 3, a3 = 5, and a5 = 1. There are n! ways to
arrange the elements in a circle. However, rotations of the arrangement do not matter, so we
must divide by n. Therefore, the number of possible loops determined by n distinct elements
is (n− 1)!.

Case 1: 5+1

We have

(
6

1

)
ways to choose the lone element and 1 way to arrange it in a circle. Then we

have 4! ways to arrange the remaining 5 elements in a circle. Therefore,

(
6

1

)
· 1 · 4! = 144.

Case 2: 4+2

We have

(
6

2

)
ways to choose the two elements and 1! way to arrange it in a circle. Then we

have 3! ways to arrange the remaining 4 elements in a circle. Therefore,

(
6

2

)
· 1! · 3! = 90.

Case 3: 3+3

We have 1
2
·
(
6
3

)
ways to split the six elements into two groups of 3. We must divide

(
6

3

)
by 2

because the order we choose the groups of 3 does not matter. For example, choosing {1, 2, 3}
and leaving {4, 5, 6} for the other group is the same as choosing {4, 5, 6} and leaving {1, 2, 3}
for the other group. There 2! ways to arrange a given loop of 3. Therefore, 1

2
·
(
6
3

)
· (2!)2 = 40.

144 + 90 + 40 = (B) 274 .


