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Solutions:

1. (ARMLlegend) Let P (x) be a quadratic with real, nonzero roots and coefficients such
that

P (−20) + P (21) = P (−29).

The sum of the reciprocals of the roots of P (x) can be expressed as m
n , where m and n

are relatively prime positive integers. Find m+ n.

Answer: 031

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let P (x) = ax2 − bx+ c, and let the roots of P (x) be p and q. Then, 1
p + 1

q = b
c , by

Vieta’s Formulas. Now,

P (−29) = P (−20) + P (21)

=⇒ (292a+ 29b+ c) = (202a+ 20b+ c) + (212a− 21b+ c)

= 292a− b+ 2c

=⇒ 30b = c =⇒ b

c
=

1

30
.

Thus, m+ n = 031. �
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2. (DeToasty3) Let A and B be two sets. Suppose that A contains a distinct elements and
B contains b distinct elements, where a and b are positive integers. For some positive
integer n, if there exist 2021 distinct elements belonging to at least one of A and B, and
there exist n distinct elements belonging to both A and B, then the number of possible
ordered pairs (a, b) is 2n. Find n.

Answer: 674

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Note that the number of distinct elements belonging to A but not B is a − n, the
number of distinct elements belonging to bothA and B is n, and the number of distinct
elements belonging to B but not A is b−n. Then, we have that a−n+n+b−n = 2021,
or a+ b = 2021 +n. However, we also need a−n ≥ 0 and b−n ≥ 0. The ordered pair
with the smallest a is (n, 2021), and the ordered pair with the largest a is (2021, n).
We see that there exists exactly one ordered pair for each integer a from n to 2021,
inclusive, so the number of possible ordered pairs (a, b) is 2021 − n + 1 = 2022 − n.
We let 2022− n = 2n, which gives 3n = 2022 =⇒ n = 674. �

3. (Emathmaster) Let ABCD be a rectangle with AB = 6 and BC = 2. Let M be the
midpoint of side AD, and let T be a rectangle with all of its vertices on a side of 4BMC,
two of which are on side BC. If T is similar to ABCD, then the sum of all possible areas
of T can be written as m

n , where m and n are relatively prime positive integers. Find
m+ n.

Answer: 127

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B C

M

2

A D

6

As T is similar to ABCD, the height must either be 3 times, or one third of the width,
giving us two possible configurations of the rectangle. We use similar triangles, the
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one cut out by the right edge of T and half the large triangle, which has height 6 and
width 1. For the larger one (the blue one in the above figure), where the height is
three times the width w,

1− 3w
2

1
=

3w

6
=⇒ w = 1,

so the area is 3. For the second (the red one in the above figure), we have that the
width is three times the height h,

1− 3h
2

1
=
h

6
=⇒ h =

3

5
,

thus the area of the second configuration is 27
25 .

The sum of possible areas of T is 3 + 27
25 = 102

25 , so our answer is 102 + 25 = 127. �

4. (Emathmaster) Find the number of ordered quadruples (a, b, c, d) of positive odd integers
satisfying

ab < 49 and cd = min(a, b),

where min(a, b) denotes the smaller of a and b. (If a = b, then min(a, b) = a = b.)

Answer: 083

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We do casework on min(a, b). It is obvious to note that min(a, b) < 7, since, otherwise,
if min(a, b) ≥ 7, then ab ≥ 7 · 7 = 49, which is a contrast to the problem statement.

Case 1. min(a, b) = 1. Then c and d must both be 1. One of a and b must be 1. If a
is 1, then b can be any odd integer from 1 to 47, giving 24 cases. Similarly, for b = 1
we also have 24 cases. However, we have over-counted the case (a, b) = (1, 1), so we
subtract 1 to get 47 cases in this case.

Case 2. min(a, b) = 3. Then c and d must be 1 and 3 in some order, so there are 2
choices for c and d. Note that if a = 3, then b can only be 3, 5, 7, 9, 11, 13, or 15 for 7
cases. We also get 7 cases for b = 3, and we need to subtract 1 again for over-counting
(3, 3). This gives 13 · 2 = 26 cases.

Case 3. min(a, b) = 5. Then c and d must be 1 and 5 in some order, so there are 2
choices for c and d. Note that if a = 5, then b can only be 5, 7, or 9 for 3 cases. We
also get 3 cases for b = 5, and we need to subtract 1 again for over-counting (5, 5).
This gives 5 · 2 = 10 cases.

The answer is 47 + 26 + 10 = 083. �

5. (PCChess) Let AB be a diameter of circle ω1 with center O1 and radius 2. Let circle ω2

with center O2 be drawn such that ω2 is tangent to ω1 and is also tangent to AB at O1.



Season 2 OTIE Solutions 4

Let D be the point of intersection of line segment BO2 and ω2. Let the line tangent to
ω1 at B and the line tangent to ω2 at D meet at a point P . Then PO2

1 can be written
as a− b

√
c, where a, b, and c are positive integers, and c is not divisible by the square of

any prime. Find a+ b+ c.

Answer: 049

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

O1
A

O2

B
D

P

By the tangent conditions, we have that ∠PBO1 = ∠PDB = 90◦. By angle chasing,
we get that ∠O2BO1 = ∠BPD and ∠O2O1B = ∠PDB = 90◦. By AA similarity,
we have that 4O2BO1 ∼ 4BPD. Since BO1 = 2 and O1O2 = 1, we have that
BO2 =

√
BO2

1 +O1O2
2 =
√

22 + 12 =
√

5 by the Pythagorean Theorem. Also, since
DO2 = 1, we get that BD = BO2 −DO2 =

√
5− 1. By similarity, we have that

O1O2

BO2
=
BD

BP
=⇒ 1√

5
=

√
5− 1

BP
=⇒ BP = 5−

√
5.

By using the Pythagorean Theorem on 4PBO1, we get that

PO2
1 = BP 2 +BO2

1 = (5−
√

5)2 + 22 = 25− 10
√

5 + 5 + 4 = 34− 10
√

5,

so our answer is 34 + 10 + 5 = 049. �

6. (DeToasty3) Let S be the set of all positive integers less than and relatively prime to
49. Call a subset of S with 15 distinct numbers great if it can be divided into 3 pairwise
disjoint groups of 5 numbers such that no two numbers in the same group leave the same
remainder when divided by 7, and the product of the numbers in each group leaves a
unique remainder when divided by 7. Let n be the number of great subsets of S. Find
the sum of the (not necessarily distinct) primes in the prime factorization of n.
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Answer: 075

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

First, we note that 6! ≡ 6 (mod 7). For each product of a group, there exists a
unique number which must be removed from the set {1, 2, 3, 4, 5, 6} to obtain a unique
remainder.

Call the number of times a residue modulo 7 appears in the subset the number of
its mentions. Within the subset, there must exist 3 residues with 3 mentions, and 3
residues with 2 mentions. Within S, there exist seven numbers which are 1 modulo 7,
seven numbers which are 2 modulo 7, and so on. Therefore, for each of the residues
with 3 mentions, there exist

(
7
3

)
= 35 ways to choose the three numbers, and

(
7
2

)
= 21

ways to choose the two numbers for the 3 residues with 2 mentions. But we also have(
6
3

)
= 20 ways to choose which of the 3 residues will have 3 mentions.

Thus, we have that
n = 353 · 213 · 20 = 22 · 33 · 54 · 76,

so the sum of the primes is 2(2) + 3(3) + 5(4) + 7(6) = 075. �

7. (DeToasty3) Let a and b be positive real numbers such that loga b = logab a
2, 17ab =

60b+ 1, and a 6= b. The difference between the largest and smallest possible values of ab
can be expressed as m

n , where m and n are relatively prime positive integers. Find m+n.

Answer: 067

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Add loga a = 1 to both sides of the first equation to obtain loga ab = 2 logab a+1. Note
that loga ab and logab a are reciprocals of each other. Let x = loga ab. Then, we have
that x = 2

x +1. Multiplying both sides by x, we get x2 = 2+x, so x2−x−2 = 0, from
which we get that x = −1, 2. Therefore, loga ab = 1 + loga b = −1, 2 =⇒ loga b =
−2, 1. Therefore, we have that either 1

a2
= b or a = b. Since a and b are distinct, we

can discard the latter case to get 1
a2

= b as our only solution.

We have that 1
a2

= b and 17ab − 60b − 1 = 0. Rearrange the second equation to
get b = 1

17a−60 . Then, we must have that 1
a2

= 1
17a−60 =⇒ a2 − 17a + 60 = 0.

From here, we get that a = 5, 12. Plugging a = 5 and a = 12 into the equation
b = 1

a2
=⇒ ab = 1

a , we get ab = 1
5 and ab = 1

12 , respectively. We see that 1
5 >

1
12 , so

our difference is 1
5 −

1
12 = 7

60 . Thus, we have that m+ n = 7 + 60 = 067. �

8. (DeToasty3) Find the sum of the three least positive integers that cannot be written as

a!

b!
+
c!

d!
+
e!

f !

for positive integers a, b, c, d, e, f less than or equal to 5.
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Answer: 170

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Notice that the only numbers that we can create with one of these fractions are 1, 2,
3, 4, 5, 6, 12, 20, 24, 60, 120, and their reciprocals. We can create 1 with 1

3 + 1
3 + 1

3
and 2 with 1

2 + 1
2 + 1.

Now consider the possible sums of two of the fractions. We can create 1 with 1
2 + 1

2 ,
2 with 1 + 1, and we can make every number until 12 by only using the numbers 1,
2, 3, 4, 5, 6. We can create 13 through 18 by using 12 and 1 through 6. Although
we cannot create 19 or 20 with two fractions, we can create these with three fractions
by using a sum with two fractions and adding a number from 1 to 6 as the third
fraction. This means that we must find the first time when there is a gap of more
than 6 numbers that we can create by summing two fractions.

Continuing, we see that 21 through 30, 32, 36, 40, 44, and 48 can be created by
summing two fractions. However, the next number is 61, which is more than 6 away
from 48. We can create 49 through 54 by summing three fractions, but we cannot
create 55 through 61 with 3 fractions, if the third fraction is one of 1, 2, 3, 4, 5, 6.
However, we can create 56 with 12 + 20 + 24.

Thus, the three least positive integers are 55, 57, and 58, and their sum is 170. �

9. (DeToasty3) A jar contains five slips labeled from 1 to 5, inclusive. In each turn, Kevin
takes two different slips out of the jar at random. If Kevin selects slips with the numbers
a and b, the numbers a and b are replaced with the numbers 0 and a+ b, and both slips
are put back in the jar. Kevin stops once he writes the number 12 on a slip or takes three
turns. The probability that the number 12 has been written once Kevin stops is m

n , where
m and n are relatively prime positive integers. Find m+ n.

Answer: 533

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Notice that in order to have 12 be written, we have to combine either 3, 4, and 5, or
1, 2, 4, and 5. We may treat the numbers we want to combine as Xs, the numbers we
don’t want to combine as Y s, and the zeroes as Os. Observe that if we select an O at
any move, the highest number will not change. This means that we have to combine
two Xs in order to progress to 12. We also don’t want to combine an X and a Y at
any point.

Case 1. 3, 4, and 5 are chosen. Notice that we start with XXXY Y . We have two
possibilities: we select two Xs with a 3

10 chance, or we select two Y s with a 1
10 chance.

• Subcase 1. Two Xs. Then, we have XXY Y O. From here, there are three
possibilities: we select two Xs with a 1

10 chance, we select two Y s with a 1
10

chance, and we select one O and one X or one Y with a 2
5 chance. If we select

two Xs, then we have XY Y OO, and we are done. If we select two Y s, then we
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have to select two Xs for our third move, which has a 1
10 chance. Finally, if we

select one O and one X or one Y , then we have to select two Xs on our third
move, which has a 1

10 chance.

• Subcase 2. Two Y s. Then, we have XXXY O. From here, we must select only
two Xs for our next two moves in order to arrive at 12 by three total moves.
Picking out two Xs on the second move has a 3

10 chance, and then picking out
two Xs on the third move has a 1

10 chance.

Our total probability for Case 1 is
(

3
10 ·

1
10

)
+
(

3
10 ·

1
10 ·

1
10

)
+
(

3
10 ·

2
5 ·

1
10

)
+
(

1
10 ·

3
10 ·

1
10

)
=

6
125 .

Case 2. 1, 2, 4, and 5 are chosen. Notice that we start with XXXXY . We see that
we must choose only two Xs in each move in order to arrive at 12 in three moves.
There is a 3

5 chance for the first move, a 3
10 chance for the second move, and a 1

10
chance for the third move, for a total probability of 3

5 ·
3
10 ·

1
10 = 9

500 .

Adding, we arrive at the total probability of 6
125 + 9

500 = 33
500 , so m+ n = 533. �

10. (DeToasty3) Consider the polynomial

P (x) = x21 − 364x20 +Q(x),

where Q(x) is some polynomial of degree at most 19. If the roots of P (x) are all integers
and P (21) = 2021, find the remainder when P (23) is divided by 1000.

Answer: 535

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Write P (x) as
P (x) = (x− r1)(x− r2) · · · (x− r21),

for roots r1, r2, . . . , r21. Define a new sequence a1, a2, . . . , a21 such that ai = 21 − ri
for all 1 ≤ i ≤ 21. Now, we have

(x− (21− a1))(x− (21− a2)) · · · (x− (21− a21)).

By Vieta’s Formulas, we have that

364 = r1 + r2 + · · ·+ r21

=⇒ 364 = (21− a1) + (21− a2) + · · ·+ (21− a21)
=⇒ 77 = a1 + a2 + · · ·+ a21.

Note that from the condition P (21) = 2021, we have that a1 ·a2 · · · a21 = 2021 as well.

Our goal is to find the exact integer values of a1, a2, . . . , a21. Notice that 2021 = 43·47,
and 43 + 47 = 90, and since 90 is close to 77, and all other non 1 or −1 values seem
too far off to be true (e.g. 2021), we have that 43 and 47 should be two of the values.
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Now, for the other values, we must have either 1 or −1. We want the sum to be equal
to 77, so we must have 3 1s and 16 −1s.

From this, we arrive at the polynomial

P (x) = (x− (21− (−1)))16(x− (21− 1))3(x− (21− 43))(x− (21− 47))

=⇒ P (x) = (x− 22)16(x− 20)3(x+ 22)(x+ 26).

Finally, plugging in 23 yields P (23) = 27 · 45 · 49 = 59, 535, and the remainder when
59, 535 is divided by 1000 is 535. �

11. (NJOY) In the complex plane, there exist distinct complex numbers z1, z2, z3, and z4
lying in clockwise order on a circle. If |zi| 6= |zj | for all i, j ∈ {1, 2, 3, 4} where i 6= j, and

3z1 − 5z4
2z2 − 3z3

= 2,

then
∣∣∣ z1−z4z2−z3

∣∣∣2 = m
n , where m and n are relatively prime positive integers. Find m+ n.

Answer: 013

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

First, draw the complex plane and let A, B, C, D respectively represent the points
z1, z2, z3, and z4. Let P be the intersection of the diagonals AC and BD of the cyclic
quadrilateral ABCD. Note that we are asked to find∣∣∣∣z1 − z4z2 − z3

∣∣∣∣2 =
AD2

BC2
.

Now, rewrite the given expression as

3z1 + 6z3
9

=
4z2 + 5z4

9
.

This implies (by the Section Formula) that P divides AC in the ratio 6 : 3 = 2 : 1
and BD in the ratio 5 : 4. Now, let AP = 2x, PC = x, BP = 5y, PD = 4y. Then,
using Power of a Point with P ,

2x · x = 5y · 4y =⇒ x2 = 10y2 (1)

Now, suppose that the angle ∠DAP = θ = ∠CBP . Then, by the Law of Cosines,
and using (1), we obtain AD2 = 4x2 + 16y2 − 16xy cos θ = 8(7y2 − 2xy cos θ), and
BC2 = x2 + 25y2 − 10xy cos θ = 5(7y2 − 2xy cos θ). Therefore, we have

AD2

BC2
=

8

5
,

so m+ n = 013. �
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12. (kevinmathz) A date can be written m/d/y, where m is the month, d is the day, and y is
the last two digits of the year. Call a date bad if both m+ d+ y is even, and the greatest
common divisor of m, d, y can be written as 2n for an integer n. Find the number of
bad dates from January 1, 2017 (1/1/17) to December 31, 2021 (12/31/21), inclusive.
(Note that April, June, September, and November have 30 days, February has 28 days in
the years 2017, 2018, 2019, 2021 and 29 days in 2020, and the rest have 31 days.)

Answer: 864

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Clearly, the values of y will be 17, 18, 19, 20, and 21. First, we will find how many
times m + d + y is even. For each year, there are 179 dates where m + d + y is even
and 1 ≤ d ≤ 30 (The Leap day will not make a difference in our count of bad dates
as 2 + 29 + 20 is even). Then if d = 31, then m + y must be odd. Going through
the values of m where d can be 31 and the given values of y, there are 17 different
occasions where m + y is odd. In total, there are 5 · 179 + 17 = 912 different dates
where m+ d+ y is even.

Next, we have to subtract the dates where gcd(m, d, y) is not a power of 2. If
gcd(m, d, y) is not a power of 2, then they must all share an odd prime factor that
is not a multiple of 2. Since 1 ≤ m ≤ 12, this prime number could be 3, 5, 7, or 11,
depending on the year, month, and day. If the year is 2018 or 2021, then the prime
number could be 3. For this case, 5 days would be subtracted from each month the
number of those days would be divisible by 3, and there are 8 different months that
satisfy this condition. If the year is 2020, the prime number could be 5. For this
case, 3 days would be subtracted from each month the number of those days would be
divisible by 5, and there are 2 different months that satisfy this condition. If the year
is 2021, the prime number could be 7. For this case, 2 days would be subtracted from
each month the number of those days would be divisible by 7, and there is 1 month
that satisfies this condition.

In total, there are 912− 8(5)− 2(3)− 1(2) = 864 bad dates. �

13. (Awesome guy) Triangle ABC with circumcircle Γ has side lengths AB = 8, BC = 6,
and AC = 4. Let D be a point on side BC such that there exists a circle internally
tangent to Γ at A and tangent to BC at D. Let E be a point on minor arc B̂C of Γ
such that the length BE is twice the length CE. Let K be the intersection of lines AE
and BC. Let L be a point on BC such that AD bisects ∠KAL. Then AK · AL = m

n ,
where m and n are relatively prime positive integers. Find m+ n.

Answer: 129

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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B

A

C

K

E
D

L

Solution 1 (kevinmathz) Note that since BE = 2CE, then AB · CE = AC · BE
and thus ABEC is harmonic. Now, we see that AD is the angle bisector of ∠BAC
because a homothety maps D to the midpoint of minor arc B̂C. Now, since ABEC
is harmonic, then AK is the A-symmedian of 4ABC, and AL is the A-median of
4ABC. Due to that, AB2 · CK = AC2 · BK and thus, with the given sides, we see
that BK = 6

5 and CK = 24
5 .

Now, using Stewart’s Theorem,

864

25
+ 6AK2 =

768

5

so AK2 = 496
25 meaning AK = 4

5 ·
√

31. Similarly, 2AL2 = AC2 + AB2 − 2BL2 =

16 + 64 − 18 = 62 so AL =
√

31. Hence, AK · AL = 124
5 , meaning our answer is

124 + 5 = 129. �

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Solution 2 We first claim that AD is the angle bisector of ∠BAC. Let ω be the
circle internally tangent to Γ at A and BC at D with center O1, and let O2 be the
center of Γ. If we extend line AD to intersect Γ again at a point D′ 6= A, we see
that 4AO1D ∼ 4AO2D

′ by using common angle DAO1 and the fact that both
triangles are isosceles. Since DO1 is perpendicular to BC, we have that D′O2 is also
perpendicular to BC. Since O2 is the circumcenter of4ABC, the point of intersection
of D′O2 and BC is the midpoint of BC, meaning that D′ is the midpoint of arc B̂C,
and ∠BAD = ∠CAD, as desired.

We now claim that L is the midpoint of BC. Let line AL intersect Γ at another
point F 6= A. Since line AD bisects both ∠BAC and ∠KAL, we have the lengths
BE = 2CE are preserved as BF = 2CF . Let BF = x. By angle chasing, we get that
4BLA ∼ 4FLC and 4BLF ∼ 4ALC. We have the ratios

FL

CL
=
x

4
and

FL

BL
=
x

4
,
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so we get that
BL

CL
= 1 =⇒ BL = CL,

as desired. The rest is a length chase. Proceed with Solution 1.

14. (Awesome guy) Let ABC be a right triangle with right angle at B, AB = 20, and
BC = 21. Let D be the center of circle ω with diameter AB. The circumcircle of
4BCD and ω intersect at B and E. Line AC intersects the circumcircle of 4BCD at
C and K. Line AC intersects ω at A and L. The tangent at D to the circumcircle of
4BCD intersects line EK at M . Lines CD and EL intersect at N . The circumcircle of
4DMN has a radius of length m

n , where m and n are relatively prime positive integers.
Find m+ n.

Answer: 033

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B

A

C

D

E
K

L

M

N

F

First, note that since BCDE is cyclic, ∠CED = 180◦ − ∠CBD = 90◦. Thus CE is
tangent to ω and CD bisects BE. Note that since ĈB = ĈE, ∠CDB = ∠CKE =

∠LKE. Furthermore, ∠KLE = ∠ALE = ÂE
2 = ∠ABE = ∠DBE = ∠DCE =

∠DCB. Thus 4EKL ∼ 4BDC, and ∠NEM = ∠LEK = 90◦.

Note that CD is the diameter of the circumcircle of 4BCD, thus 90◦ = ∠CDM =

∠NDM . Thus DEMN is cyclic, and ∠DNM = ∠DEM = ∠DEK = D̂K
2 = ∠DCK.

Therefore, we have MN ‖ CK, and 4EMN ∼ 4EKL ∼ 4BDC.

Let F be the intersection between lines AE and DM . Note that F is the midpoint of
AE. Next, note that since BC and CE are tangent to ω, line AC is the A-symmedian
of4ABE. Since DF ‖ BE, there exists a homothety with center A that maps4ABE
to 4ADF , and thus AC is the A-symmedian 4ADF .

Note that ∠MAE = ∠MEA. Since ∠AEB = ∠MEN = 90◦, ∠MEA = ∠NEB.
Note that ∠NEB = ∠LEB = ∠LAB. Thus ∠MAE = ∠LAB, and ∠MAB =
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∠LAE. This implies line AM is the reflection of AC over the A-angle bisector of
4ADF . Since AC is the A-symmedian of 4ADF , AM is a median, and thus M is
the midpoint of DF .

Note that since DEMN is cyclic, the circumradius of 4DMN is equivalent to MN
2 .

Note that 4BCD ∼ 4EBA ∼ 4FDA. Since CD =
√

102 + 212 =
√

541 and DA =
10, we know DM = MF = 21

2 ·
10√
541

= 105√
541

. Similarly, AH = 10 · 10√
541

= 100√
541

, thus

by the Pythagorean Theorem, ME = AM = 145√
541

. This yields MN = DC ·ME
DB = 29

2 .

Thus m
n = 29

4 , and m+ n = 033. �

15. (reaganchoi) Let f(x) = x4 − 17x2 + 17. Let S be the set of positive integers a, with
a ≤ f(2020), such that a2a − 1 is divisible by 2021. Choose a random element b in S.
The probability that bb + 1 is divisible by 2021 can be expressed as m

n , where m and n are
relatively prime positive integers. Find the remainder when m+ n is divided by 1000.

Answer: 201

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Solution (P Groudon) The prime factorization of 2021 is 43 · 47. It is clear that
no element a in S can be divisible by 43 or 47, since then, it would be impossible for
a2a − 1 to be divisible by 2021.

To start, by Fermat’s Little Theorem, X42 ≡ 1 (mod 43) for all integers X not divis-
ible by 43. Thus, (X + 43 · 42)X+43·42 ≡ XX (mod 43). Hence, under modulo 43, the
value XX is periodic with length 43 · 42, where the base is taken modulo 43 and the
exponent is taken modulo 42.

Similarly, X46 ≡ 1 (mod 47), implying that (X + 47 · 46)X+47·46 ≡ XX (mod 47).
Hence, under modulo 47, the value XX is periodic with length 47 · 46, where the base
is taken modulo 47 and the exponent is taken modulo 46.

Merging these two observations, the value of XX (mod 2021) is periodic with length
lcm(43 · 42, 47 · 46) = 2 · 43 · 47 · 21 · 23. Call this period length p.

Note that

f(x) = (x2 − 1)(x2 − 16) + 1 = (x+ 4)(x+ 1)(x− 1)(x− 4) + 1,

so plugging in x = 2020 gives

f(2020) = 2024 · 2021 · 2019 · 2016 + 1.

It can be seen that f(2020)− 1 is divisible by p. Let c = f(2020)−1
p . Computing c,

c =
2024 · 2021 · 2019 · 2016

2 · 43 · 47 · 21 · 23
= 88 · 2019 · 48.

Thus, as a ranges from 1 to f(2020), inclusive, it will make c complete cycles of length
p and then achieve 1 last integer that is 1 (mod p). Since p is divisible by 2021, the



Season 2 OTIE Solutions 13

last integer that is 1 (mod p) will be in S, but if b = f(2020), then bb + 1 will not be
divisible by 2021.

Let B be the number of integers b such that 1 ≤ b ≤ p and bb ≡ −1 (mod 2021).
Similarly, let A be the number of integers a such that 1 ≤ a ≤ p and a2a ≡ 1
(mod 2021). Since XX (mod 2021) repeats with period p, and there are c complete
cycles of p as a varies (with one last integer), the desired probability is given by

c · B
c · A+ 1

.

Now, it remains to compute B and A.

Let u and v be primitive roots modulo 43 and 47, respectively. These exist, since
43 and 47 are both prime. By a property of a primitive root, u42 ≡ 1 (mod 43) and
{u, u2, u3, . . . , u42} ≡ {1, 2, 3, . . . , 42} (mod 43). Essentially, as an integer k ranges
from 1 to 42, the value uk (mod 43) uniquely achieves all nonzero residues modulo 43,
so the value is uniquely determined by k (mod 42). Similarly, the value vk (mod 47)
is determined by k (mod 46).

To compute B, let b ≡ ui (mod 43) and b ≡ vj (mod 47) for some integers i and j.
Then,

bb ≡ −1 (mod 2021) ⇐⇒ uib ≡ −1 (mod 43) and vjb ≡ −1 (mod 47)

This implies that ib ≡ 21 (mod 42) and jb ≡ 23 (mod 46). Clearly, b cannot be
even and must be odd, which determines b (mod 2). Since i (mod 42) determines b
(mod 43), j (mod 46) determines b (mod 47), it suffices to examine i and b (mod 42)
and j and b (mod 46) to determine b (mod p), which determines bb (mod 2021).

Decomposing the congruences to have a prime power modulus (which is valid by
Chinese Remainder Theorem),

ib ≡ 1 (mod 2)

ib ≡ 0 (mod 3)

ib ≡ 0 (mod 7)

jb ≡ 1 (mod 2)

jb ≡ 0 (mod 23)

From the first and fourth congruences, i ≡ j ≡ b ≡ 1 (mod 2).

There are 32−22 = 5 pairs (i, b) in modulo 3 that satisfy the second congruence, since
there are 32 pairs in general, but 22 of these pairs have neither variable congruent
to 0. Similarly, there are 72 − 62 = 13 pairs (i, b) in modulo 7 that satisfy the
third congruence, and 232 − 222 = 45 pairs (i, b) in modulo 23 that satisfy the last
congruence.

By Chinese Remainder Theorem, the values of i and b in modulo 2, 3, and 7, as well
as j and b in modulo 2 and 23 can be independently chosen. Hence, the total number
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of combinations of (i, b) (mod 42) in tandem with (j, b) (mod 46) is 5 · 13 · 45 = 2925.
Thus, B = 2925.

To compute A, let a ≡ ui (mod 43) and a ≡ vj (mod 47) as before. Then,

a2a ≡ 1 (mod 2021) ⇐⇒ u2ia ≡ 1 (mod 43) and v2ja ≡ 1 (mod 47).

This implies that ia ≡ 0 (mod 21) and ja ≡ 0 (mod 23). These are almost exactly
the same congruences found when computing B; the difference is that here, the parity
of the three variables can be freely chosen. Hence, A = 23 · B.

Returning to the requested probability, it is

c · B
c · 8B + 1

.

It is clear the numerator and denominator are relatively prime, so m+n = 9c · B+ 1,
where c = 88 · 2019 · 48 from earlier and B = 2925.

Obviously, c is divisible by 8, so m+ n ≡ 1 (mod 8). To compute m+ n (mod 125),
note that 2925 is divisible by 25. Hence,

9c · B + 1 = 25(117 · 88 · 2019 · 48 · 9) + 1.

It remains to compute the stuff inside the parentheses modulo 5, which is 3 (mod 5).
Hence, m + n ≡ 3 · 25 + 1 ≡ 76 (mod 125). Merging the two congruences implies
m+ n ≡ 201 (mod 1000). �

Remark. By the way, m+ n = 224, 506, 339, 201, in case you’re wondering.


