

2nd Online Test Junior Mathematical Olympiad

J-1. Find all functions f taking real numbers to positive integers, such that

$$f^{f(x)}(y) = f(x)f(y)$$

holds true for all real numbers x and y, where $f^a(b)$ denotes the result of a iterations of f on b; i.e. $f^1(b) = f(b)$ and $f^{a+1}(b) = f(f^a(b))$.

- **J-2.** In triangle ABC with circumcircle Γ , let ℓ_1 , ℓ_2 , and ℓ_3 be the tangents to Γ at points A, B, and C, respectively. Choose a variable point P on side \overline{BC} . Let the lines parallel to ℓ_2 and ℓ_3 , passing through P, meet ℓ_1 at points C_1 and B_1 , respectively. Let the circumcircles of $\triangle PBB_1$ and $\triangle PCC_1$ meet each other again at a point $Q \neq P$. Let lines ℓ_1 and BC meet at a point R, and let lines ℓ_2 and ℓ_3 meet at a point X. Prove that, as P varies on side \overline{BC} , lines PQ and RX meet at a fixed point.
- **J-3.** For a positive integer n, let A_1, A_2, \ldots, A_n be distinct subsets of $\{1, 2, \ldots, n+1\}$, each of size at most two. Prove that there exist distinct subsets S and S' of $\{1, 2, \ldots, n+1\}$ such that

 $|A_k \cap \mathcal{S}| = |A_k \cap \mathcal{S}'|$

for all integers $1 \le k \le n$, where |T| denotes the number of elements in a set T.

Time: 4 hours and 30 minutes. Each problem is worth 7 points.

(Day **1**)