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§0 Problems

§0.1 Day 1 Problems
J-1. Find all functions f taking real numbers to positive integers, such that

ff(x)(y) = f(x)f(y)

holds true for all real numbers x and y, where fa(b) denotes the result of a iterations of f on b; i.e.
f1(b) = f(b) and fa+1(b) = f(fa(b)).

J-2. In triangle ABC with circumcircle Γ, let `1, `2, and `3 be the tangents to Γ at points A, B, and C,
respectively. Choose a variable point P on side BC. Let the lines parallel to `2 and `3, passing through
P , meet `1 at points C1 and B1, respectively. Let the circumcircles of 4PBB1 and 4PCC1 meet each
other again at a point Q 6= P . Let lines `1 and BC meet at a point R, and let lines `2 and `3 meet at
a point X. Prove that, as P varies on side BC, lines PQ and RX meet at a fixed point.

J-3. For a positive integer n, let A1, A2, . . . , An be distinct subsets of {1, 2, . . . , n+ 1}, each of size at most
two. Prove that there exist distinct subsets S and S ′ of {1, 2, . . . , n+ 1} such that

|Ak ∩ S| = |Ak ∩ S ′|

for all integers 1 ≤ k ≤ n, where |T | denotes the number of elements in a set T .

§0.2 Day 2 Problems
J-4. A n × n square grid is composed of n2 unit squares, for a positive integer n. For each unit square in

the grid, all of its sides are drawn, and some diagonals of some unit squares are also drawn, so that no
unit square has both diagonals drawn and no two unit squares that share a side have diagonals drawn
in the same direction. Find all values of n for which there exists a grid configuration such that it is
possible to move along a drawn side or diagonal one at a time, starting at the bottom-left vertex of
the grid and traversing each segment exactly once.

J-5. Call a positive integer m cool if there exists a polynomial P (x) with integer coefficients such that
(P (x))m − x is divisible by m for all positive integers x.

(i) Prove that all cool numbers are square-free.

(ii) Find all positive integers n such that, if Pn is the product of all primes p such that n ≤ p ≤ 2n,
then Pn is cool.

Note. A square-free number is an integer which is not divisible by the square of any prime.

J-6. Let ABC be a triangle with circumcenter O, incenter I, and circumcircle Γ. Let there be a circle
touching AB and AC, and tangent to Γ internally at a point X. The perpendicular bisector of BC
meets line AX at a point S. Additionally, let K be the point on the circumcircle of 4AIX, distinct
from I, such that KI ‖ BC. Line KS meets the circumcircle of 4AIX again at T . Prove that the
tangent at T to the circumcircle of 4TBC passes through the circumcenter of 4TAO.
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§1 Day 1 Solutions

§1.1 Solution to J-1, proposed by NJOY
Find all functions f taking real numbers to positive integers, such that

ff(x)(y) = f(x)f(y)

holds true for all real numbers x and y, where fa(b) denotes the result of a iterations of f on b; i.e.
f1(b) = f(b) and fa+1(b) = f(fa(b)).

Answer. f ≡ 1 is the only such function. It is easy to check it indeed satisfies the equation.

Notations: The symbol N denotes the set of positive integers.

Solution 1 (by tastymath75025) Let S be the range of f . Then, by the given equation,

fP−1(Q) = PQ,

for all P,Q ∈ S. But, since ff(x)(x) = f2(x), if P ∈ S ⇒ P 2 ∈ S. Hence, fP
2−1(Q) = P 2Q as well. Now

we prove the following Claim:

Claim 1.1.1. fx(P−1)(Q) = P xQ, for all P,Q ∈ S and x ∈ N.

Proof. We prove it using induction. The base case x = 1 is already proven. Suppose that the claimed
relation holds for x = k. Then, for x = k + 1,

f (x+1)(P−1)(Q) = fx(P−1)(fP−1(Q)) = fx(P−1)(PQ) = P x+1Q,

where the last equality follows from the x = k case of the claimed relation and the fact that if P,Q ∈ S ⇒
PQ ∈ S.

Back to the problem, taking x→ P + 1,

fP
2−1(Q) = PP+1Q,

so combining this with fP
2−1(Q) = P 2Q, we obtain

PP+1 = P 2,

for all P ∈ S. Hence, PP−1 = 1, and since P ∈ N, we obtain P = 1. Therefore, f ≡ 1, which obviously
satisfies, so it is our only solution. �

Solution 2 (by Orestis Lignos) Let P (x, y) denote the assertion

P (x, y) : ff(x)(y) = f(x)f(y).

We prove the following Claims:
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Claim 1.1.2. f(f(x)) = cf(x) for a constant c and for every x ∈ R.

Proof. Note that, P (x, f(y)) yields

f(x)f(f(y)) = ff(x)(f(y)) = f(ff(x)(y)) = f(f(x)f(y)).

Now, by switching x, y, we obtain f(f(x))f(y) = f(f(x)f(y)). Combining both relations yield

f(f(x))

f(x)
=
f(f(y))

f(y)
. (1.1)

Note that 1.1 holds true for any x, y ∈ R. So, the ratio is equal to a constant, say c. Therefore, f(f(x)) =

cf(x) holds true for any x ∈ R and for some constant c, as claimed.

Claim 1.1.3. fn(x) = cn−1f(x), for all positive integers n and for all x ∈ R.

Proof. We prove the Claim using induction. Indeed, the base case n = 1 is obvious. Suppose that the
claimed relation holds for n = k. Then, for n = k + 1,

fk+1(x) = fk(f(x)) = ck−1 · f(f(x)) = ck−1 · cf(x) = ckf(x),

completing the inductive step and hence we conclude this claim due to induction.

Now, by using the result of Claim 1.1.3,

f(x)f(y) = ff(x)(y) = cf(x)−1 · f(y) =⇒ cf(x)−1 = f(x),

for all x ∈ R. Let f(x) = m ∈ N (m is variable) and c =
A

B
with gcd(A,B) = 1 and A,B ∈ N. Then,

cf(x)−1 = f(x) rewrites as Am−1 = mBm−1.

Since Bm−1 | Am−1 and gcd(A,B) = 1, we obtain B = 1, hence Am−1 = m. If A = 1, then m = 1, hence
f ≡ 1, which satisfies. Suppose that A ≥ 2. Then,

m = Am−1 ≥ 2m−1.

But, 2m−1 > m if m ≥ 3 using easy induction, hence m ∈ {1, 2}, that is f(x) ∈ {1, 2} for all x. Suppose
that there exists a t such that f(t) = 2. Then, cf(t)−1 = f(t), hence c = 2, implying

4 = 2f(t) = cf(t) = f(f(t)) = f(2) ∈ {1, 2},

a contradiction. Therefore, f(x) = 1, for all x, giving that f is constantly equal to 1.

Hence, we conclude that f ≡ 1 is the only such function satisfying the given equation. �
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§1.2 Solution to J-2, proposed by NJOY & Orestis_Lignos
In triangle ABC with circumcircle Γ, let `1, `2, and `3 be the tangents to Γ at points A, B, and C,
respectively. Choose a variable point P on side BC. Let the lines parallel to `2 and `3, passing through P ,
meet `1 at points C1 and B1, respectively. Let the circumcircles of 4PBB1 and 4PCC1 meet each other
again at a point Q 6= P . Let lines `1 and BC meet at a point R, and let lines `2 and `3 meet at a point X.
Prove that, as P varies on side BC, lines PQ and RX meet at a fixed point.

A

B
C

P

B1

C1
Ω2Ω1

B′

C ′
Q

R

X

ZW

Remark. Although the problem admits a pure angle-chase solution and power of a point solution, it is not easy
at all. It is pretty difficult to identify the fixed point, without the aid of Geogebra/Asymptote etc. Several
testsolvers pointed out to us that it may be even be too difficult for its position.

Let XY Z be the triangle formed by `1, `2, and `3, where Y lies on `1 and `3, and Z lies on `1 and `2. Let
the circumcircles of 4PBB1 and 4PCC1 intersect line Y Z at points B′ 6= B1 and C ′ 6= C1, respectively.

First Step (Identifying the fixed point) We begin by proving a claim.

Claim 1.2.1. Points B′ and C ′ are fixed, regardless of the position of P .

5
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Proof. Note that ∠ABB′ = ∠B′BP −∠B = ∠PB1Y −∠B = 180◦ −∠AY C −∠B = ∠B, and since B′ lies
on `1, it is fixed. Analogously, we obtain that C ′ is fixed as well.

Remark. On a side note, points B′ and C′ are such that line AB is tangent to the circumcircle of 4ABB′ and
line AC is tangent to the circumcircle of 4ACC′.

Now, let W 6= Q be the intersection of line PQ with the circumcircle of triangle QB′C ′.

Claim 1.2.2. W is the desired fixed point.

Proof. Indeed, note that ∠WB′C ′ = ∠WQC ′ = ∠PQC ′ = 180◦ − ∠PCC ′ = 180◦ − 2∠C = ∠XZY , hence
WB′ ‖ XZ. Similarly, XY ‖ WC ′, which implies that W is the point of intersection of the parallels from
B′ to line XZ and from C ′ to line XY , which is fixed, using Claim 1.2.1.

Second Step (Fixed point lies on RX)

Method 1 (straightforward bash)

Let lines XW , `1 meet at point R′. Then, using B′W ‖ XZ and WC ′ ‖ XY , we obtain

R′B′

R′Z
=
R′W

R′X
=
R′C ′

R′Y
,

hence
R′B′

R′Z
=
R′C ′

R′Y
.

Claim 1.2.3. Only one point E exists on ray Y TSZ such that
EB′

EZ
=
EC ′

EY
.

Proof. Note that
EB′

EZ
=
EC ′

EY
⇒ EB′

ZB′
=
EC ′

C ′Y
,

hence
EB′

EC ′
=
B′Z

C ′Y
⇒ EB′

B′C ′
=

B′Z

C ′Y −B′Z
,

so
EB′ =

B′C ′ ·B′Z
C ′Y −B′Z

,

which is constant, therefore E is unique.

From the Claim, it suffices to show that
RB′

RZ
=
RC ′

RY
, or equivalently

RB′

RC ′
=
RZ

RY
, since this would imply

that R ≡ R′ hence line XW passes through R, as desired.

Since the circumcircle of triangle ABC is the incircle of triangle XY Z, we know that lines XA,Y B,ZC
are conccurent. An easy proof of this fact follows by Ceva’s Theorem. From the complete quadrilateral

XBAC.ZY , we obtain that (R,Z,A, Y ) = −1, hence
RZ

RY
=
AZ

AY
.

In the following trig bash, trivial computation of angles is omitted. We know that ∠B′BA = ∠B,∠ACC ′ =

∠C. Employing the Law of Sines, we obtain:

• in triangle RB′B,
RB′

sin 2B
=

B′B

sin(B − C)
,
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• in triangle RC ′C,
RC ′

sin 2C
=

C ′C

sin(B − C)
.

So by dividing the previous two relations,
RB′

RC ′
=

sin 2B

sin 2C
· B
′B

C ′C
. Again by Law of Sines,

• in triangle B′BA,
B′B

sinC
=

AB

sinA
,

• in triangle C ′CA,
C ′C

sinB
=

AC

sinA
.

Dividing the two relations,
B′B

C ′C
=

sin2 C

sin2B
, since

AB

AC
=

sinC

sinB
. Hence,

RB′

RC ′
=

sin2 C

sin 2C
· sin2B

sin 2B
.

To finish, note that, by Sine Law:

• in triangle ZAB,
AZ

sinC
=

AB

sin 2C
,

• in triangle Y AC,
AY

sinB
=

AC

sin 2B
.

After dividing these two relations and using that
AB

AC
=

sinC

sinB
, we obtain that

AZ

AY
=

sin2 C

sin 2C
· sin2B

sin 2B
=
RB′

RC ′
,

hence we are done. �

Method 2 (much shorter ending of Method 1)

In this solution, we present an alternative way of proving the relation
RB′

RZ
=
RC ′

RY
of Method 1. Note that

∠BZC ′ = 180◦ − 2∠C = 180◦ − ∠BCC ′,

so BZC ′C is cyclic. Similarly, BB′Y C is cyclic.
Hence, RZ ·RC ′ = RB ·RC = RB′ ·RY , which rewrites to the desired relation.

Remark. Basically, Method 2 provides a non-trigonometric way to prove the relation
RB′

RZ
=

RC′

RY
. Although it

is pretty short, it is not so easy to find.
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§1.3 Solution to J-3, proposed by Supercali
For a positive integer n, let A1, A2, . . . , An be distinct subsets of {1, 2, . . . , n+ 1}, each of size at most two.
Prove that there exist distinct subsets S and S ′ of {1, 2, . . . , n+ 1} such that

|Ak ∩ S| = |Ak ∩ S ′|

for all integers 1 ≤ k ≤ n, where |T | denotes the number of elements in a set T .

Solution (a1267ab). So we’re proving this claim by induction:
If A1, . . . , An are subsets of {1, 2, . . . , n + 1} of size at most 2, then there exists distinct subsets I, J such
that |Ak ∩ I| = |Ak ∩ J | for all k ≤ n.
Suppose one of those sets is a singleton, say An = {n+ 1}. By the inductive hypothesis, there exist subsets
I ′, J ′ of {1, 2, . . . , n} such that |Ak ∩ I ′| = |Ak ∩ J ′| for all k ≤ n − 1. (Note that it doesn’t matter if
n+ 1 ∈ Ak.) Then we can take I = I ′, J = J ′.
Induct on n. Remove all singleton sets and the associated elements: this reduces to a smaller problem, so
assume that all sets have size 2. Then we can view these as a collection of n edges on n + 1 vertices. At
least one connected component must be a tree. Then 2-color that tree to obtain I, J . �

Solution (outline, by p_square). Consider all multisets of multiplicity at most 2 from {1, 2, . . . n + 1}.
For each such multiset consider the vector |Ak ∩ I| (mod 3). There are 3n such vectors, but 3n+1 such
mulitsets. Hence for two distinct ones I, J the vectors are the same. Now if an element occurs twice in I
and at most once in J then delete both occurrences from I and add one occurrence to J . If an element
occurs twice in both I, J , delete all 4 occurrences. Thus we obtain sets I ′, J ′ for which the vectors are the
same. But |Ak ∩ I| ≤ 2 anyway so in fact the sizes are equal. �
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§2 Day 2 Solutions

§2.1 Solution to J-4, proposed by ARMLlegend & reaganchoi
A n×n square grid is composed of n2 unit squares, for a positive integer n. For each unit square in the grid,
all of its sides are drawn, and some diagonals of some unit squares are also drawn, so that no unit square has
both diagonals drawn and no two unit squares that share a side have diagonals drawn in the same direction.
Find all values of n for which there exists a grid configuration such that it is possible to move along a drawn
side or diagonal one at a time, starting at the bottom-left vertex of the grid and traversing each segment
exactly once.

Answer. The answer is n ∈ {1, 2, 3}.

For the sake of convenience, we put the grid in the coordinate plane, with the bottom-left vertex of the grid
at the origin.

Case 1. n = 1. We can easily see that this case satisfies the conditions.

Case 2. n = 2. We can satisfy the conditions by connecting two opposite diagonals that “cut off a corner”.

(0, 0)

(1, 1)
(0, 1)

(1, 2)
(0, 2)

(2, 0)
(1, 0)

(2, 1)

(2, 2)

For example, we can draw the diagonal connecting (0, 1) and (1, 0) as well as the diagonal connecting (1, 2)

and (2, 1).

Case 3. n = 3. We can satisfy the conditions by connecting all four diagonals that “cut off a corner”.

(0, 0)

(1, 1)
(0, 1)

(1, 2)
(0, 2)

(2, 0)
(3, 0)

(1, 0)

(2, 1)

(2, 2)

(0, 3)
(1, 3) (2, 3)

(3, 1)

(3, 2)

(3, 3)

9
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Case 4. n > 3. We claim that at least one edge vertex on each side will end up with at least one vertex with
odd degree.

Assume that some side of the square has only vertices with even degree (4). Then, consider the center vertex
of the side, which we will call (a, 0). There must be exactly one diagonal connecting it, let us say from (a, 0)

to (a+ 1, 1).

Then, the vertex (a+ 1, 0) also needs a diagonal, but both possible diagonals are invalid by the restrictions,
a contradiction.

In conclusion, we have found that the only n which satisfy the problem condition are n ∈ {1, 2, 3}. �

10
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§2.2 Solution to J-5, proposed by Orestis_Lignos
Call a positive integer m cool if there exists a polynomial P (x) with integer coefficients such that (P (x))m−x
is divisible by m for all positive integers x.

(i) Prove that all cool numbers are square-free.

(ii) Find all positive integers n such that, if Pn is the product of all primes p such that n ≤ p ≤ 2n, then
Pn is cool.

Note. A square-free number is an integer which is not divisible by the square of any prime.

Answer. (ii): All n 6= 2 satisfy the problem condition.

(i) Since m | P (x)m − x, we obtain that tm (mod m) must contain all possible residues. So, this means
that the set {1m, 2m, . . . ,mm} is complete (mod m). Since this set and {0, 1, · · · ,m − 1} have both
cardinality m, any im corresponds to exactly one remainder from the set {0, 1, · · · ,m − 1}. Hence,
im 6= jm (mod m) for all i 6= j with i, j ≤ m.

Suppose now that m is not square-free. Then m = p1
k1 · · · prkr with pi primes and at least one of ki

being > 1. Consider now s = p1p2 · · · pr. Since there exists a ki > 1, we conclude that m > s.

In addition, sm = pm1 · · · pmr . If there existed a i such that ki ≥ m, then

m ≥ piki ≥ 2m ≥ m+ 1,

a contradiction. So m > ki for all i, which means that

p1
k1 · · · prkr | sm = p1

m · · · prm.

Therefore, sm ≡ mm (mod m), and s < m as established before. This is a contradiction. Hence, m
must be square-free. �

(ii) Let Pn = p1p2 . . . pk with pi being all primes between n and 2n, and p1 < p2 < . . . < pk. We distinguish
some cases:

Case 1. n = 1. Then, Pn = 2, so by taking P (x) = x, we have that 2 = Pn | x2 − x.

Case 2. n = 2. Then, Pn = 6. If 6 was cool, then there would exist a P (x) such that 6 | P (x)6 − x for
all x ∈ Z, a contradiction since if x ≡ 2 (mod 3), then P (x)6 ≡ 2 (mod 3), which is not possible.

Case 3. n > 2. We will prove that Pn is cool. In order to do so, we aim to pick P (x) = xt for suitable
t. The given condition rewrites as pi | xtp1p2...pk − x for all i.

By Fermat’s Little Theorem, xpi − 1 ≡ 1 (mod pi) if pi - x, so if we pick t such that (pi − 1) |
(tp1 · · · pr − 1), then we would have:

xtp1···pk = xs(pi−1)+1 = x · (xpi−1)s ≡ x (mod p1),

hence we have the desired.

What it remains now, is to pick t such that (pi − 1) | (tp1 · pr − 1) for all i, or equivalently

lcm(p1 − 1, · · · pr − 1) | (tp1 · · · pr − 1).

11
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We now make the following Claim.

Claim 2.2.1. We have gcd(lcm(p1 − 1, · · · pr − 1), tp1 · · · pr − 1) = 1.

Proof. Suppose otherwise. Then, there must exist indices i, j such that pi | (pj − 1). If pj − 1 ≥ 2pi,
we obtain 2n > pk − 1 ≥ pj − 1 ≥ 2pi ≥ 2p1 ≥ 2n, a contradiction. Therefore pj − 1 = pi which means
pj = 3, pi = 2 since they are primes. But this is a clear contradiction, since pi ≥ n > 2, for all i.

Back to the problem, from the Claim’s result we finish easily by taking as t the inverse of p1 . . . pr
modulo lcm(p1 − 1, · · · pr − 1).

Hence, we conclude that all n 6= 2 satisfy the problem condition. �

12
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§2.3 Solution to J-6, proposed by Orestis_Lignos
Let ABC be a triangle with circumcenter O, incenter I, and circumcircle Γ. Let there be a circle touching
AB and AC, and tangent to Γ internally at a point X. The perpendicular bisector of BC meets line AX at a
point S. Additionally, let K be the point on the circumcircle of 4AIX, distinct from I, such that KI ‖ BC.
Line KS meets the circumcircle of 4AIX again at T . Prove that the tangent at T to the circumcircle of
4TBC passes through the circumcenter of 4TAO.

A

B C

O

I

X

S

M

N

K

T

W

Solution 1, by proposer. Let M,N be the points where the perpendicular bisector of BC intersects (Γ),
where M belongs to the arc BAC. Then, SM · SN = SA · SX = ST · SK, hence KTMN is cyclic. Let I
be the incenter, and TI intersect MN at O′. We claim that O′ ≡ O. We prove the following known Claim:

Claim 2.3.1. Points X, I,M are collinear.

Proof. Let Y,Z be the tangent points of circle (γ) with AB,AC. The homothety with center X sends Y to
the midpoint P of the arc AB, hence X,Y, P are collinear, and similarly X,Z,Q are collinear with Q being
the midpoint of the arc AC. By Pascal’s theorem on PCXABQ, we have that Y,Z and I ≡ CP ∩ BQ are
collinear. So, ∠Y IB = ∠AIB − 90◦ = ∠C/2 = ∠Y XB, hence Y BXI is cyclic. Thus, ∠BXI = ∠AY I =

90◦ − ∠A/2 = ∠BXM , implying that X, I,M are collinear.

To the problem, since
∠AKI = ∠AXI = ∠AXM,

and
∠KIA = ∠C + ∠A/2 = 90◦ − ∠AXM,

we have that
∠KAI = 180◦ − ∠AKI − ∠AIK = 90◦.

13
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In addition A, I,N and M, I,X are collinear, hence I is the orthocenter of KMN .
Now,

∠MTO′ = ∠MTK − 90◦ = 180◦ − ∠MNK − 90◦ − 90◦ − ∠MNK = ∠IMO′,

so ∠MTO′ = ∠IMO′, which implies that O′M2 = O′I · O′T , and similarly O′N2 = O′I · O′T . Therefore,
O′M = O′N , implying that O′ ≡ O.
Let P be the circumcenter of triangle TBC. We need to show that ∠WTP = 90◦, or equivalently that
∠ATP = 90◦ − ∠ATW . But,

∠ATW = 90◦ − ∠TWA/2 = 90◦ − ∠TOA,

so it suffices to show that ∠TOA = ∠ATP .
We prove the following Claims:

Claim 2.3.2. ∠BTC = |∠BIC − ∠BOC| =
∣∣∣∣3∠A2 − 90◦

∣∣∣∣.
Proof. Refer to the attached diagram. Note that ∠OAI = (∠B − ∠C)/2 = ∠ATI by an easy angle-chase
and by assuming WLOG that ∠B > ∠C. So ∠OAI = ∠ATI, hence OA is tangent to the circumcircle of
KTAI. Hence OA2 = OI ·OT .
So OB2 = OC2 = OI · OT , implying that ∠OBI = ∠OTB,∠OCI = ∠OTC. Therefore, ∠BTC =

∠OBI + ∠OCI.
But now note that by angle-chase ∠OBI + ∠OCI = 360◦ − ∠BIC − ∠BOC = |3∠A/2− 90◦|.

Claim 2.3.3. Quadrilateral TAON is cyclic.

Proof. Note that, ∠ATN = ∠ATO +∠OTN = ∠AKI + 90◦ −∠KTN = (∠B −∠C)/2 + 90◦ −∠KMN =

(∠B − ∠C)/2 + ∠MKI = ∠B − ∠C = ∠AOM , hence ∠ATN = ∠AOM , so TAON is cyclic.

To the problem, ∠PBC = 90◦ − ∠BTC, and ∠OBC = ∠A− 90◦, so

∠PBO = ∠PBC + ∠OBC = 90◦ − ∠A/2 = ∠PNB,

hence ∠PBO = ∠PNB ⇒ PB2 = PO · PN , giving PA2 = PO · PN , implying ∠PTO = ∠ONT .
By the second Claim,

∠TAO = 180◦ − ∠ONT = 180◦ − ∠PTO ⇒ ∠PTO = 180◦ − ∠TAO = ∠ATO + ∠AOT.

So, ∠TOA = ∠PTO − ∠ATO = ∠ATP , and the proof is complete. �

Solution 2. (by tastymath75025, inversive) As in Solution 1, we obtain that:

(i) Points X, I,M are collinear.

(ii) Points T, I,O are collinear.

(iii) Quadrilateral TAON is cyclic.

Perform an inversion with center O and power OA2. This inversion sends T to I, since OA2 = OI · OT .
So, the circumcircle of triangle TBC goes to the circumcircle of triangle BIC.
In addition, if W is the circumcenter of triangle TAON , then WA = WN = WT so OW ⊥ AN . There-
fore, if O′ is the symmetric point of O with respect to AN , then O′ is the image of W under this inver-
sion. Indeed, note that

∠IO′O = ∠IOO′ = ∠OTW,

therefore TIO′W is cyclic, implying

OO′ ·OW = OI ·OT = OA2.
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To end, line WT is therefore sent to the circumcircle of triangle OIO′.
So, what it remains to prove is that the circumcircles of triangles

OIO′, BIC,

are tangent. But this is obvious, since both circumcircles are symmetric with respect to line AI. The proof
is complete. �
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